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We consider the real time dynamics of an initially localized distinguishable impurity injected into
the ground state of the Lieb-Liniger model. Focusing on the case where integrability is preserved,
we numerically compute the time evolution of the impurity density operator in regimes far from
analytically tractable limits. We find that the injected impurity undergoes a stuttering motion
as it moves and expands. For an initially stationary impurity, the interaction-driven formation
of a quasibound state with a hole in the background gas leads to arrested expansion – a period of
quasistationary behavior. When the impurity is injected with a finite center of mass momentum, the
impurity moves through the background gas in a snaking manner, arising from a quantum Newton’s
cradle-like scenario where momentum is exchanged back-and-forth between the impurity and the
background gas.

Introduction.— With recent experimental advances in
the field of cold atomic gases, the physics of the one-
dimensional Bose gas is receiving an increasing amount of
attention.1–15 These systems, in which one has unprece-
dented isolation from the environment and fine control of
interparticle interactions, are excellent tools for examin-
ing novel phenomena arising from strong correlations.

One such phenomenon which has piqued both
theoretical8,14,16–21 and experimental19,22 curiosity is the
expansion dynamics of a gas of cold atoms. A number
of surprising and interesting effects have been observed,
of which arrested expansion (or self trapping)16–18 is of
particular relevance to this work. A gas (bosons19 or
fermions23,24) is released from a confining potential and
allowed to expand on the lattice. Under this time evo-
lution ‘bimodal’ expansion is observed: the sparse outer
regions of the cloud rapidly expand whilst the dense cen-
tral region spreads only very slowly. This can be par-
tially understood by considering the limit of strong in-
teractions: doubly occupied sites are high energy config-
urations which, thanks to the lattice imposing a finite
bandwidth and energy conservation, cannot release their
energy to the rest of the system and decay.18

With these recent experimental advances25 has also
come the ability to examine systems in which there is
a large imbalance between two species;6,7,9,26–29 a natu-
ral starting point for the study of impurity physics. This
gives insight in to a diverse range of problems,29 from the
physics of polarons27,30 to the x-ray edge singularity31,32
and the orthogonality catastrophe.33 The physics of im-
purities also plays an important role in the calculation of
edge exponents in dynamical correlation functions34 and
in understanding the nonequilibrium dynamics following
a local quantum quench.13,35,36

The experimental study of the out-of-equilibrium dy-
namics of a single impurity in the one-dimensional Bose
gas has revealed rather rich physics: from how an impu-

rity spreads when accelerated through a Tonks-Girardeau
gas,6 to how interactions effect oscillations in the size of a
trapped out-of-equilibrium impurity.9 Numerous theoret-
ical investigations have addressed the Tonks-Girardeau
regime: from a static point impurity37,38 to a completely
delocalized (e.g., plane wave) impurity.39–44 Away from
the Tonks-Girardeau limit, theoretical study of the con-
tinuum problem is challenging and results have focused
on lattice models, such as the Bose-Hubbard model.8,45

In this letter we consider the out-of-equilibrium dy-
namics of an initially localized impurity in the Lieb-
Liniger model. Using a combination of exact analytical
results and numerical computations, we show that an im-
purity injected into the ground state of the Lieb-Liniger
model undergoes a stuttering sequence of rapid move-
ment/expansion followed by arrested expansion. For
an initially stationary impurity, this is caused by the
interaction-driven out-of-equilibrium formation of a qua-
sibound state of the impurity with a hole in the back-
ground gas. This quasibound state is robust under time-
evolution for long periods of time. For an impurity with a
finite initial center of mass (COM) momentum, the stut-
tering sequence results in the impurity “snaking” through
the background gas; the impurity exchanges momentum
back-and-forth with the background gas through a quan-
tum Newton’s cradle-like mechanism.3 The results we
present are relevant to experiments (see, e.g. Ref. [6])
and should be observed under reasonable conditions.

The two-component Lieb-Liniger model.—We consider
two species of delta function interacting bosons confined
to a ring of length L. The Hamiltonian of the two-
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component Lieb-Liniger model (TCLLM) is given by

H =

∫ L

0

dx
∑
j=1,2

~2

2m
∂xΨ†j(x)∂xΨj(x)

+

∫ L

0

dx
∑
j,l=1,2

cΨ†j(x)Ψ†l (x)Ψl (x)Ψj(x), (1)

where herein we set ~ = 2m = 1, c is the interaction
parameter, and the boson operators obey the canonical
commutation relations [Ψj(x),Ψ†l (y)] = δj,lδ(x− y) with
j, l = 1, 2 denoting the species. As in the case of the one-
component Lieb-Liniger model,46–48 the generalization to
multiple particle species remains integrable provided all
species interact identically.49,50

The TCLLM can be solved by the Bethe Ansatz,49,50
giving access to some of its basic physical properties (see,
e.g., [51–53] and references therein). AnN -particle eigen-
state containing N1 particles of species 1 is characterized
by a set of N momenta {q}N = {q1, . . . , qN} and a set
of N1 species rapidities {λ}N1

= {λ1, . . . , λN1
}. These

momenta and rapidities satisfy the nested Bethe ansatz
equations

eiqjL = −
N∏
l=1

qj − ql + ic

qj − ql − ic

N1∏
m=1

qj − λm − ic
2

qj − λm + ic
2

, (2)

N∏
l=1

λk − ql − ic
2

λk − ql + ic
2

= −
N1∏
l=1

λk − λl − ic
λk − λl + ic

, (3)

where j = 1, . . . , N and k = 1, . . . , N1. The eigenstate
|{q}N ; {λ}N1〉 has energy Eq =

∑
j q

2
j and momentum

Kq =
∑
j qj .

The initial state.— We study the dynamics of an im-
purity starting from the state

|Ψ(Q)〉 =
1

N

∫ L

0

dx eiQxe
− 1

2

(
x−x0
a0

)2

Ψ†1(x)|Ω〉, (4)

where |Ω〉 is the N2 = N − 1 particle ground state of
the one-component Lieb-Liniger model, Q is the COM
momentum of the impurity and N normalizes the state.
The study of such a state is partially motivated by the
experiments performed in Refs. 6 and 9, which study the
dynamics of an impurity in a background gas.

The initially localized impurity of Ref. 6 is prepared by
illuminating a trapped one-component Bose gas with a
radio-frequency pulse; this causes transitions between the
|F,mF 〉 = |1,−1〉 hyperfine state of the trapped gas and
the |1, 0〉 state (the impurity). Due to the magnetic trap,
transitions occur only within a spatially localized region,
the thinness of which is Fourier-limited by the pulse du-
ration. The resulting impurity contains up to three par-
ticles and is accelerated through the gas by gravity, as
the |1, 0〉 state does not experience the magnetic trap.

On the other hand, the impurity in Ref. 9 is prepared
by first tuning the interspecies interaction to zero and
then using a species-dependent trap and light blade to

shape the impurity. Following this preparation, the inter-
species interaction is turned on and the impurity released
from the trap/light blade and its expansion studied.

To distill the intrinsic dynamics of the impurity, our
scenario varies slightly from experiments6,9: we study
an impurity injected into a constant density background
gas in the absence of an external potential (such as a
magnetic trap and gravity). Similar approximations have
been applied in the well-studied yrast states.54–58
Time evolution protocol.— Our aim is to compute

the impurity density profile when the initial state (4) is
time-evolved according to the Hamiltonian (1) ρ1(x, t) =

〈Ψ(Q)|eiHtΨ†1(x)Ψ1(x)e−iHt|Ψ(Q)〉. This is a nontrivial
problem as the initial state (4) is not an eigenstate of the
Hamiltonian. We use the integrability of the TCLLM to
numerically evaluate the density profile using recently de-
rived results for matrix elements of local operators.53 Due
to a dearth of results for matrix elements in the TCLLM,
we are restricted to studying the density of the impurity
and we cannot examine the background gas.59

The essential idea is the following: we insert complete
sets of eigenstates between each time evolution operator
and the initial state in ρ1(x, t). By orthogonality, we sum
over the Bethe states with N1 = 1 and N1+N2 = N . The
momenta and rapidities characterizing these states sat-
isfy the nested Bethe ansatz equations (2,3). The density
profile of the impurity will then be given by

ρ1(x, t) =
∑
{k};µ
{p};λ

〈Ψ(Q)|{p};λ〉〈{p};λ|Ψ†1(0)Ψ1(0)|{k};µ〉

×〈{k};µ|Ψ(Q)〉ei(Ep−Ek)tei(Kp−Kk)x, (5)

where {q} ≡ {q}N . The overlap of the initial state with
a Bethe state can be expressed as N〈{k};µ|Ψ(Q)〉 =∫ L

0
dx ei(Q+Kk−KΩ)xe

− 1
2

(
x−x0
a0

)2

〈{k};µ|Ψ†1(0)|Ω〉, where
KΩ is the momentum of the ground state |Ω〉. So, in or-
der to compute (5) we require two ingredients: the matrix
elements of the creation operator Ψ†1(0) and the density
operator Ψ†1(0)Ψ1(0) on the Bethe states. These ma-
trix elements have been derived from the algebraic Bethe
ansatz.53,60 Required results are summarized in the Sup-
plemental Materials.61

Readers interested in our scheme for numerically eval-
uating the expansion (5) can consult Ref. [62]. An impor-
tant point to note is that the expansion (5) contains an
infinite number of terms. We truncate the Hilbert space
by selecting the Bethe states which have the largest over-
laps with the initial state (4). To quantify the truncation
error, we compute the saturation of the sum rule∑

{k}N ;µ

∣∣∣〈Ψ(Q)|{k}N ;µ〉
∣∣∣2 = 1, (6)

and we present numerical values for this with our results.
We are limited to small numbers of particles N . 10 and
we have to keep ∼ 104 − 105 states to saturate the sum
rule to 2 decimal places.
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FIG. 1. Time evolution of the impurity density of the initial
state (4) with Q = 0, x0 = L/2 and a20 = 1.125 on the
L = 40 ring for a system of N = 8 particles with interaction
parameter c = 10. The Hilbert space is truncated to 25150
states, leading to the sum rule (6) = 0.9858. (Inset) Time-
evolution of the maximum of the density ρ1(x0, t). Constant
time cuts can be found in the Supplemental Materials.61

The noninteracting limit.— In the noninteracting
limit, the time evolution of the initial state (4) is a
single particle problem. The time-dependent density
profile can be calculated exactly (we take L → ∞):
ρ1(x, t)c=0 = a0√

π
exp(−a

2
0(x+2Qt)2

a4
0+t2

)/
√
a4

0 + t2. The non-
interacting density profile remains Gaussian at all times,
with a time-dependent width and amplitude.
Arrested expansion: Q = 0.— In Fig. 1 we present re-

sults for the time evolution of the impurity density pro-
file (5) for N = 8 bosons on the circumference L = 40
ring starting from the initial state (4) with x0 = L/2,
a2

0 = 1.125 and interaction parameter c = 10. We mea-
sure time in units of tF = 1/EF where EF = (πN/L)2 is
the Fermi energy in the c→∞ limit. The Hilbert space
is truncated to 25150 states, leading to the sum rule sat-
uration 0.9858 (i.e., to 1.4%). Upon time evolution the
wave packet spreads, maintaining its Gaussian shape as
in the noninteracting case. However, at time t ∼ 2tF the
wave packet stops spreading and only undergoes small
amplitude breathing oscillations. This arrested expan-
sion is an example of prethermalization.63–70 The system
relaxes in a two-step process, first approaching a quasi-
stationary non-equilibrium state (the arrested expansion)
before subsequent equilibration. Two-step relaxation has
been observed in the one-dimensional Bose gas following
a global quantum quench.71–73

We can qualitatively reproduce aspects of this behavior
with a mean field (MF) decoupling of the interaction term

Ψ†j(x)Ψ†l (x)Ψl (x)Ψj(x) ≈ ρj(x, t)Ψ†l (x)Ψl (x) + j ↔ l.

(7)
At a MF level the impurity profile is a time-dependent re-
pulsive one-body potential for the background gas. The
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FIG. 2. The dynamics of the impurity density (5) from the
initial state (4) with a20 = 1.125 and Q = 40π/L. We use
21,507 states to study a system of N = 8 bosons on the length
L = 40 ring with interaction parameter c = 10, resulting in
the sum rule (6) = 0.981. Plots of constant time cuts are
presented in the Supplemental Materials.

region under the impurity then excludes particles in the
background gas, resulting in the formation of a ‘hole’.
This hole in the background gas acts as a confining (at-
tractive) one body potential for the impurity in MF and
the two form a quasibound particle-hole pair,74 much like
an exciton in the electron gas (see, e.g., Ref. [75]). This
is different to the self-trapping scenario on the lattice:
there the ‘doublons’ are stable as the large interaction
energy cannot be converted into kinetic energy due to
particle number conservation and the finite bandwidth.
In the continuum, dynamical arrest is driven by the for-
mation of the impurity-hole quasibound state and is not
observed for an indistinguishable impurity.61

At later times (t & 7tF ), the impurity eventually
broadens. This broadening occurs in a sequence of expan-
sion/arrested expansion steps, whilst the impurity under-
goes small amplitude breathing oscillations.61 The slow
decay of the density at later times may be related to the
subdiffusive equilibrium behavior reported in Ref. [35].
However, finite-size effects and our choice of observable
obscure the characteristic logarithmic decay of subdiffu-
sion.
The snaking impurity: Q 6= 0.— Finally, we consider

the time evolution of the initial state (4) with nonzero
COM momentum Q. Our prescription for computing
the time evolution is identical to the Q = 0 case; in
Fig. 2 we present results for the impurity density profile
for the same set of parameters as in Fig. 1 with Q = π.
We see rather surprising behavior: the impurity moves
in a snaking manner, repeatedly moving and expanding
before becoming approximately stationary with arrested
expansion. To quantify the nonuniform motion of the
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impurity further, we define the COM coordinate X(t) as

X(t) =
L

2π
arctan

[ ∫ 2π

0
dθ sin θρ1(θ, t)∫ 2π

0
dθ cos θρ1(θ, t)

]
, (8)

where θ = 2πx/L. We plot the COM coordinate in Fig. 3
for a number of interaction strengths; X(t) shows regions
of rapid movement, followed by (approximately) station-
ary plateaux. Only at t . tF /3 does the COM move as
in the noninteracting case: X(t)c=0 = X(0) − 2Qt. The
sharpness of the plateaux and transient regions are gov-
erned by the interplay between the delocalization of the
impurity and its interactions with the background gas.76
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FIG. 3. The time evolution of the center of mass X(t) (8)
for: (points) the initial state (4) with a20 = 1.125, Q = π for
N = 8 particles on the length L = 40 ring with interaction
parameter c = 5, 10, 20; (line) a noninteracting point particle
with mass m = 1/2 and velocity Q/m. Inset: velocity of the
center of mass V (t) = ∆X(t)/∆t (cf. Ref. 39).

We have the following picture for the behavior shown
in Fig. 2: (i) The impurity moves to the left, scattering
particles in the background gas and creating excitations
with finite momentum. (ii) The impurity continues to
scatter with the background until it imparts most (or
all) of its COM momentum. (iii) The excitations in the
background gas propagate around the ring and then col-
lide once more with the impurity. (iv) The impurity gains
COM momentum and the process repeats. In support of
this picture is the behavior of the COM position plateau
with system size L: the time for leaving the plateau τp
is (approximately) linearly dependent on L. τp is also
related to the initial momentum Q of the impurity; for
large Q, τp ∼ 1/Q (an excitation with momentum Q has
velocity ∼ Q/m). This Q-dependence reflects the mo-
mentum imparted by the impurity to excitations in the
background gas, which then propagate around the ring.77
This process can be thought of in terms of a quantum
Newton’s cradle3 on a ring, with the impurity exchang-
ing momentum back-and-forth with the background gas,
resulting in the snaking motion shown in Fig. 2. In the
Supplemental Materials we show that this behavior is
not realized on the lattice when we perform the MF de-

coupling (7) for the same set of parameters that capture
some aspects of the Q = 0 behavior.

It is interesting to consider removing periodic bound-
ary conditions: excitations produced by injecting the im-
purity will propagate towards the boundary and subse-
quently reflect, returning to once again scatter the im-
purity. This reflection of the excitations means that we
expect the COM to snake back-and-forth about x0 rather
than around the ring. In the presence of a harmonic trap,
the COM will travel in a snaking motion due to both the
trap and collisions with the background excitations.

A question that has recently attracted attention
is whether an injected impurity has finite momen-
tum in the t → ∞ limit (see, e.g., Refs. [39–
44]). To address this, we compute the momen-
tum of the impurity in the diagonal ensemble
(DE)78 KDE =

∑
{k};µ〈Ψ(Q)|{k};µ〉〈{k};µ|Ψ(Q)〉 ×∑

p〈{k};µ|pΨ
†
1,pΨ1,p|{k};µ〉, where Ψ1,p =

1/L
∫

dxe−ipxΨ1(x). Doing so, we find KDE ≈ −0.022
(for N = 4 particles on the length L = 40 ring), in
keeping with general expectations from the study of the
delocalized impurity in the Tonks-Girardeau limit.42–44
We have also examined the density of the impurity in
the DE to ascertain whether translational symmetry is
restored in the long-time limit. Generically, we find that
translational symmetry is not restored in the finite-size
system due to a symmetry of the Bethe states under a
change in sign of all the momenta and rapidities.
Conclusion.— In this letter, we consider the nonequi-

librium time evolution of a single localized impurity (4)
injected into the ground state of the Lieb-Liniger model.
In both the case of zero and finite COM momentum, we
observe a ‘stuttering’ behavior in the motion. In the first
case (see Fig. 1), this quantum stutter manifests in the ar-
rested expansion of the impurity (in the absence of a lat-
tice). This arises from the out-of-equilibrium formation
of quasibound impurity-hole pairs which are stable for
extended periods of time. This interaction-driven effect
can be qualitatively captured by the MF decoupling (7):
the impurity repels the background gas, leading to the
formation of a hole which acts as a confining potential for
the impurity. Eventually the impurity broadens in a se-
quence of rapid expansions and quasistationary periods,
all the while undergoing small amplitude breathing oscil-
lations. This stuttering motion and the quasibound state
formation highlights the importance of distinguishability,
as this mechanism does not exist for an impurity of the
same species as the background gas.79

In contrast, when the impurity is injected with a finite
COM momentum, the quantum stutter is clearly seen in
the motion of the impurity, which snakes through the
background gas, see Figs. 2 & 3. We can picture this
as a quantum Newton’s cradle3 on the ring: the injected
impurity scatters particles in the background gas until it
loses most of its COM momentum. These scattered exci-
tations then propagate around the ring and subsequently
collide with the impurity, causing it to move once again.
This process repeats, leading to the stuttering, snaking
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motion of the COM. Quantum flutter, the exchange of
momentum back-and-forth between a delocalized impu-
rity and the background gas, has been studied in the
Tonks-Girardeau regime.39–44 The momentum of the im-
purity in the long-time limit was computed by means of
the DE and found to be small, but non-zero.

Our results are of direct relevance to experiments
in cold atomic gases and the observed physics should
not be reliant upon the integrability of the model
(see, e.g., Refs. [40] and [61]) and should survive finite
temperature.80 The discussed results may also be use-
ful in elucidating the properties of the TCLLM at finite
temperature, where it is likely that impurity-like solitons
arise.81,82 Finally, this work provides a nontrivial check

and validation of cutting-edge theoretical results for the
matrix elements of the TCLLM in the extreme imbalance
limit.53,60

Acknowledgments.— We thank Fabian Essler, Bruno
Bertini, John Goold, Rianne van den Berg and Giuseppe
Brandino for useful discussions surrounding this work.
This work was partially supported by the EPSRC under
Grant No. EP/I032487/1 (NJR), IRSES Grant QICFT
(NJR, RMK), the FOM and NWO foundations of the
Netherlands (JSC, RMK), and the U.S. Department of
Energy, Office of Basic Energy Sciences, under Contract
Nos. DE-AC02-98CH10886 and DE-SC0012704 (NJR,
RMK).

∗ nrobinson@bnl.gov
1 B. Paredes, A. Widera, V. Murg, O. Mandel, S. Folling,
I. Cirac, G. V. Shlyapnikov, T. W. Hansch, and I. Bloch,
Nature 429, 277 (2004).

2 T. Kinoshita, T. Wenger, and D. S. Weiss, Science 305,
1125 (2004).

3 T. Kinoshita, T. Wenger, and D. S. Weiss, Nature 440,
900 (2006).

4 J.-S. Caux and P. Calabrese, Phys. Rev. A 74, 031605
(2006).

5 S. Hofferberth, I. Lesanovsky, B. Fischer, T. Schumm, and
J. Schmiedmayer, Nature 449, 324 (2007).

6 S. Palzer, C. Zipkes, C. Sias, and M. Köhl, Phys. Rev.
Lett. 103, 150601 (2009).

7 S. Will, T. Best, S. Braun, U. Schneider, and I. Bloch,
Phys. Rev. Lett. 106, 115305 (2011).

8 M. A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, and
M. Rigol, Rev. Mod. Phys. 83, 1405 (2011).

9 J. Catani, G. Lamporesi, D. Naik, M. Gring, M. Inguscio,
F. Minardi, A. Kantian, and T. Giamarchi, Phys. Rev. A
85, 023623 (2012).

10 T. H. Johnson, M. Bruderer, Y. Cai, S. R. Clark, W. Bao,
and D. Jaksch, Europhys. Lett. 98, 26001 (2012).

11 S. Trotzky, Y.-A. Chen, A. Flesch, I. P. McCulloch,
U. Schollwock, J. Eisert, and I. Bloch, Nat. Phys. 8, 325
(2012).

12 F. Massel, A. Kantian, A. J. Daley, T. Giamarchi, and
P. Törmä, New J. Phys. 15, 045018 (2013).

13 A. G. Volosniev, H.-W. Hammer, and N. T. Zinner, Phys.
Rev. A 92, 023623 (2015).

14 F. Cartarius, E. Kawasaki, and A. Minguzzi, Phys. Rev.
A 92, 063605 (2015).

15 T. Langen, S. Erne, R. Geiger, B. Rauer, T. Schweigler,
M. Kuhnert, W. Rohringer, I. E. Mazets, T. Gasenzer,
and J. Schmiedmayer, Science 348, 207 (2015).

16 F. Heidrich-Meisner, S. R. Manmana, M. Rigol, A. Mura-
matsu, A. E. Feiguin, and E. Dagotto, Phys. Rev. A 80,
041603 (2009).

17 D. Muth, D. Petrosyan, and M. Fleischhauer, Phys. Rev.
A 85, 013615 (2012).

18 A. Jreissaty, J. Carrasquilla, and M. Rigol, Phys. Rev. A
88, 031606 (2013).

19 J. P. Ronzheimer, M. Schreiber, S. Braun, S. S. Hodgman,
S. Langer, I. P. McCulloch, F. Heidrich-Meisner, I. Bloch,

and U. Schneider, Phys. Rev. Lett. 110, 205301 (2013).
20 L. Vidmar, S. Langer, I. P. McCulloch, U. Schneider,

U. Schollwöck, and F. Heidrich-Meisner, Phys. Rev. B
88, 235117 (2013).

21 L. Vidmar, J. P. Ronzheimer, M. Schreiber, S. Braun, S. S.
Hodgman, S. Langer, F. Heidrich-Meisner, I. Bloch, and
U. Schneider, Phys. Rev. Lett. 115, 175301 (2015).

22 F. Jendrzejewski, A. Bernard, K. Muller, P. Cheinet,
V. Josse, M. Piraud, L. Pezze, L. Sanchez-Palencia, A. As-
pect, and P. Bouyer, Nature Phys. 8, 398 (2012).

23 U. Schneider, L. Hackermuller, J. P. Ronzheimer, S. Will,
S. Braun, T. Best, I. Bloch, E. Demler, S. Mandt,
D. Rasch, and A. Rosch, Nature Phys. 8, 213 (2012).

24 B. Schmidt, M. R. Bakhtiari, I. Titvinidze, U. Schnei-
der, M. Snoek, and W. Hofstetter, Phys. Rev. Lett. 110,
075302 (2013).

25 M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski,
A. Sen(De), and U. Sen, Adv. Phys. 56, 243 (2007).

26 A. Klein, M. Bruderer, S. R. Clark, and D. Jaksch, New
J. Phys. 9, 411 (2007).

27 A. Schirotzek, C.-H. Wu, A. Sommer, and M. W. Zwier-
lein, Phys. Rev. Lett. 102, 230402 (2009).

28 M. Bruderer, T. H. Johnson, S. R. Clark, D. Jaksch,
A. Posazhennikova, and W. Belzig, Phys. Rev. A 82,
043617 (2010).

29 P. Massignan, M. Zaccanti, and G. M. Bruun, Rep. Prog.
Phys. 77, 034401 (2014).

30 R. P. Feynman, Phys. Rev. 97, 660 (1955).
31 G. D. Mahan, Phys. Rev. 163, 612 (1967).
32 P. Noziéres and C. T. De Dominicis, Phys. Rev. 178, 1097

(1969).
33 P. W. Anderson, Phys. Rev. Lett. 18, 1049 (1967).
34 A. Imambekov, T. L. Schmidt, and L. I. Glazman, Rev.

Mod. Phys. 84, 1253 (2012).
35 M. B. Zvonarev, V. V. Cheianov, and T. Giamarchi, Phys.

Rev. Lett. 99, 240404 (2007).
36 M. Ganahl, E. Rabel, F. H. L. Essler, and H. G. Evertz,

Phys. Rev. Lett. 108, 077206 (2012).
37 J. Goold, M. Krych, Z. Idziaszek, T. Fogarty, and

T. Busch, New J. Phys. 12, 093041 (2010).
38 J. Goold, T. Fogarty, N. Lo Gullo, M. Paternostro, and

T. Busch, Phys. Rev. A 84, 063632 (2011).
39 C. J. M. Mathy, M. B. Zvonarev, and E. Demler, Nat.

Phys. 8, 881 (2012).

mailto:nrobinson@bnl.gov
http://dx.doi.org/10.1038/nature02530
http://dx.doi.org/10.1126/science.1100700
http://dx.doi.org/10.1126/science.1100700
http://dx.doi.org/10.1038/nature04693
http://dx.doi.org/10.1038/nature04693
http://dx.doi.org/10.1103/PhysRevA.74.031605
http://dx.doi.org/10.1103/PhysRevA.74.031605
http://dx.doi.org/10.1038/nature06149
http://dx.doi.org/ 10.1103/PhysRevLett.103.150601
http://dx.doi.org/ 10.1103/PhysRevLett.103.150601
http://dx.doi.org/ 10.1103/PhysRevLett.106.115305
http://dx.doi.org/ 10.1103/RevModPhys.83.1405
http://dx.doi.org/10.1103/PhysRevA.85.023623
http://dx.doi.org/10.1103/PhysRevA.85.023623
http://stacks.iop.org/0295-5075/98/i=2/a=26001
http://dx.doi.org/10.1038/nphys2232
http://dx.doi.org/10.1038/nphys2232
http://stacks.iop.org/1367-2630/15/i=4/a=045018
http://dx.doi.org/10.1103/PhysRevA.92.023623
http://dx.doi.org/10.1103/PhysRevA.92.023623
http://dx.doi.org/10.1103/PhysRevA.92.063605
http://dx.doi.org/10.1103/PhysRevA.92.063605
http://dx.doi.org/10.1126/science.1257026
http://dx.doi.org/ 10.1103/PhysRevA.80.041603
http://dx.doi.org/ 10.1103/PhysRevA.80.041603
http://dx.doi.org/10.1103/PhysRevA.85.013615
http://dx.doi.org/10.1103/PhysRevA.85.013615
http://dx.doi.org/10.1103/PhysRevA.88.031606
http://dx.doi.org/10.1103/PhysRevA.88.031606
http://dx.doi.org/ 10.1103/PhysRevLett.110.205301
http://dx.doi.org/ 10.1103/PhysRevB.88.235117
http://dx.doi.org/ 10.1103/PhysRevB.88.235117
http://dx.doi.org/ 10.1103/PhysRevLett.115.175301
http://dx.doi.org/10.1038/nphys2256
http://dx.doi.org/10.1038/nphys2205
http://dx.doi.org/10.1103/PhysRevLett.110.075302
http://dx.doi.org/10.1103/PhysRevLett.110.075302
http://dx.doi.org/ 10.1080/00018730701223200
http://stacks.iop.org/1367-2630/9/i=11/a=411
http://stacks.iop.org/1367-2630/9/i=11/a=411
http://dx.doi.org/ 10.1103/PhysRevLett.102.230402
http://dx.doi.org/ 10.1103/PhysRevA.82.043617
http://dx.doi.org/ 10.1103/PhysRevA.82.043617
http://stacks.iop.org/0034-4885/77/i=3/a=034401
http://stacks.iop.org/0034-4885/77/i=3/a=034401
http://dx.doi.org/10.1103/PhysRev.97.660
http://dx.doi.org/10.1103/PhysRev.163.612
http://dx.doi.org/10.1103/PhysRev.178.1097
http://dx.doi.org/10.1103/PhysRev.178.1097
http://dx.doi.org/10.1103/PhysRevLett.18.1049
http://dx.doi.org/10.1103/RevModPhys.84.1253
http://dx.doi.org/10.1103/RevModPhys.84.1253
http://dx.doi.org/10.1103/PhysRevLett.99.240404
http://dx.doi.org/10.1103/PhysRevLett.99.240404
http://dx.doi.org/10.1103/PhysRevLett.108.077206
http://stacks.iop.org/1367-2630/12/i=9/a=093041
http://dx.doi.org/ 10.1103/PhysRevA.84.063632
http://dx.doi.org/10.1038/nphys2455
http://dx.doi.org/10.1038/nphys2455


6

40 M. Knap, C. J. M. Mathy, M. Ganahl, M. B. Zvonarev,
and E. Demler, Phys. Rev. Lett. 112, 015302 (2014).

41 E. Burovski, V. Cheianov, O. Gamayun, and O. Ly-
chkovskiy, Phys. Rev. A 89, 041601 (2014).

42 O. Gamayun, Phys. Rev. A 89, 063627 (2014).
43 O. Gamayun, O. Lychkovskiy, and V. Cheianov, Phys.

Rev. E 90, 032132 (2014).
44 O. Lychkovskiy, Phys. Rev. A 89, 033619 (2014).
45 A. Kleine, C. Kollath, I. P. McCulloch, T. Giamarchi, and

U. Schollwöck, Phys. Rev. A 77, 013607 (2008).
46 E. H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963).
47 E. H. Lieb, Phys. Rev. 130, 1616 (1963).
48 V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quan-

tum Inverse Scattering Method and Correlation Functions
(Cambridge University Press, 1997).

49 C. N. Yang, Phys. Rev. Lett. 19, 1312 (1967).
50 B. Sutherland, Phys. Rev. Lett. 20, 98 (1968).
51 J.-S. Caux, A. Klauser, and J. van den Brink, Phys. Rev.

A 80, 061605 (2009).
52 A. Klauser and J.-S. Caux, Phys. Rev. A 84, 033604

(2011).
53 B. Pozsgay, W.-V. van Gerven Oei, and M. Kormos, J.

Phys. A 45, 465007 (2012).
54 E. Kaminishi, R. Kanamoto, J. Sato, and T. Deguchi,

Phys. Rev. A 83, 031601 (2011).
55 J. Sato, R. Kanamoto, E. Kaminishi, and T. Deguchi,

Phys. Rev. Lett. 108, 110401 (2012).
56 J. Sato, R. Kanamoto, E. Kaminishi, and T. Deguchi,

ArXiv e-prints (2012), (unpublished), arXiv:1204.3960
[cond-mat.quant-gas].

57 E. Kaminishi, J. Sato, and T. Deguchi, J. Phys. Soc. Jpn
84, 064002 (2015).

58 E. Kaminishi, J. Sato, and T. Deguchi, J. Phys. Conf. Ser.
497, 012030 (2014).

59 After the completion of this work, new results for matrix
elements in the TCLLM were obtained.60 We hope to in-
corporate these results in future works and note that these
new expressions remove our limitation of only studying the
impurity density.

60 S. Pakuliak, E. Ragoucy, and N. A. Slavnov, J. Phys. A
48, 435001 (2015).

61 See Supplemental Material [url], which includes Refs. [48,
53, 60, 83–89].

62 J.-S. Caux, J. Math. Phys. 50, 095214 (2009).
63 M. Moeckel and S. Kehrein, Phys. Rev. Lett. 100, 175702

(2008).
64 A. Rosch, D. Rasch, B. Binz, and M. Vojta, Phys. Rev.

Lett. 101, 265301 (2008).
65 M. Moeckel and S. Kehrein, Ann. Phys. 324, 2146 (2009).
66 M. Kollar, F. A. Wolf, and M. Eckstein, Phys. Rev. B 84,

054304 (2011).
67 M. Marcuzzi, J. Marino, A. Gambassi, and A. Silva, Phys.

Rev. Lett. 111, 197203 (2013).
68 F. H. L. Essler, S. Kehrein, S. R. Manmana, and N. J.

Robinson, Phys. Rev. B 89, 165104 (2014).
69 G. Menegoz and A. Silva, J. Stat. Mech. 2015, P05035

(2015).
70 B. Bertini and M. Fagotti, ArXiv e-prints (2015),

arXiv:1501.07260 [cond-mat.stat-mech].
71 M. Gring, M. Kuhnert, T. Langen, T. Kitagawa, B. Rauer,

M. Schreitl, I. Mazets, D. A. Smith, E. Demler, and
J. Schmiedmayer, Science 337, 1318 (2012).

72 T. Langen, M. Gring, M. Kuhnert, B. Rauer, R. Geiger,
D. Smith, I. Mazets, and J. Schmiedmayer, Euro. Phys.
J. Special Topics 217, 43 (2013).

73 D. A. Smith, M. Gring, T. Langen, M. Kuhnert, B. Rauer,
R. Geiger, T. Kitagawa, I. Mazets, E. Demler, and
J. Schmiedmayer, New J. Phys. 15, 075011 (2013).

74 See [61] for a mean-field analysis in a discretized model
which shows this picture captures the correct physics.

75 R. Knox, in Collective Excitations in Solids, NATO
Advanced Science Institute Series, Vol. 88, edited by
B. Di Bartolo (Springer US, 1983) pp. 183–245.

76 In [61] we show that for weak interactions the impurity has
almost completely delocalized by the second plateau, lead-
ing to a flat and stationary COM. On the other hand, with
strong interactions the spreading of the impurity is hin-
dered and on the second plateau the impurity is still well
localized. Slight spreading of the (almost) stationary im-
purity leads to the drifting of the COM observed in Fig. 3.

77 See [61] for data showing the length of time for which the
COM coordinate is approximately stationary is determined
by the total system size L and the momentum Q of the
impurity.

78 For further details on our computations in the diagonal
ensemble, see [61].

79 We show results in this case in [61].
80 A. Boudjemâa, Phys. Rev. A 90, 013628 (2014).
81 T. Karpiuk, P. Deuar, P. Bienias, E. Witkowska,

K. Pawłowski, M. Gajda, K. Rzążewski, and M. Brewczyk,
Phys. Rev. Lett. 109, 205302 (2012).

82 T. Karpiuk, T. Sowiński, M. Gajda, K. Rzążewski, and
M. Brewczyk, Phys. Rev. A 91, 013621 (2015).

83 N. Reshetikhin, J. Sov. Math. 46, 1694 (1989).
84 G. Pang, F. Pu, and B. Zhao, J. Math. Phys. 31, 2497

(1990).
85 N. Slavnov, Theor. Math. Phys. 82, 273 (1990).
86 T. Kojima, V. E. Korepin, and N. A. Slavnov, Commun.

Math. Phys. 188, 657 (1997).
87 V. E. Korepin and N. A. Slavnov, Int. J. Mod. Phys. B 13,

2933 (1999).
88 F. Göhmann and V. Korepin, Phys. Lett. A 263, 293

(1999).
89 B. Pozsgay, J. Stat. Mech. 2011, P11017 (2011).

http://dx.doi.org/ 10.1103/PhysRevLett.112.015302
http://dx.doi.org/10.1103/PhysRevA.89.041601
http://dx.doi.org/10.1103/PhysRevA.89.063627
http://dx.doi.org/10.1103/PhysRevE.90.032132
http://dx.doi.org/10.1103/PhysRevE.90.032132
http://dx.doi.org/10.1103/PhysRevA.89.033619
http://dx.doi.org/ 10.1103/PhysRevA.77.013607
http://dx.doi.org/10.1103/PhysRev.130.1605
http://dx.doi.org/10.1103/PhysRev.130.1616
http://www.cambridge.org/us/academic/subjects/physics/theoretical-physics-and-mathematical-physics/quantum-inverse-scattering-method-and-correlation-functions
http://www.cambridge.org/us/academic/subjects/physics/theoretical-physics-and-mathematical-physics/quantum-inverse-scattering-method-and-correlation-functions
http://dx.doi.org/10.1103/PhysRevLett.19.1312
http://dx.doi.org/10.1103/PhysRevLett.20.98
http://dx.doi.org/10.1103/PhysRevA.80.061605
http://dx.doi.org/10.1103/PhysRevA.80.061605
http://dx.doi.org/10.1103/PhysRevA.84.033604
http://dx.doi.org/10.1103/PhysRevA.84.033604
http://stacks.iop.org/1751-8121/45/i=46/a=465007
http://stacks.iop.org/1751-8121/45/i=46/a=465007
http://dx.doi.org/ 10.1103/PhysRevA.83.031601
http://dx.doi.org/10.1103/PhysRevLett.108.110401
http://arxiv.org/abs/1204.3960
http://arxiv.org/abs/1204.3960
http://dx.doi.org/10.7566/JPSJ.84.064002
http://dx.doi.org/10.7566/JPSJ.84.064002
http://stacks.iop.org/1742-6596/497/i=1/a=012030
http://stacks.iop.org/1742-6596/497/i=1/a=012030
http://stacks.iop.org/1751-8121/48/i=43/a=435001
http://stacks.iop.org/1751-8121/48/i=43/a=435001
http://dx.doi.org/http://dx.doi.org/10.1063/1.3216474
http://dx.doi.org/10.1103/PhysRevLett.100.175702
http://dx.doi.org/10.1103/PhysRevLett.100.175702
http://dx.doi.org/ 10.1103/PhysRevLett.101.265301
http://dx.doi.org/ 10.1103/PhysRevLett.101.265301
http://dx.doi.org/http://dx.doi.org/10.1016/j.aop.2009.03.009
http://dx.doi.org/10.1103/PhysRevB.84.054304
http://dx.doi.org/10.1103/PhysRevB.84.054304
http://dx.doi.org/10.1103/PhysRevLett.111.197203
http://dx.doi.org/10.1103/PhysRevLett.111.197203
http://dx.doi.org/10.1103/PhysRevB.89.165104
http://stacks.iop.org/1742-5468/2015/i=5/a=P05035
http://stacks.iop.org/1742-5468/2015/i=5/a=P05035
http://arxiv.org/abs/1501.07260
http://dx.doi.org/10.1126/science.1224953
http://dx.doi.org/ 10.1140/epjst/e2013-01752-0
http://dx.doi.org/ 10.1140/epjst/e2013-01752-0
http://stacks.iop.org/1367-2630/15/i=7/a=075011
http://dx.doi.org/10.1007/978-1-4684-8878-4_5
http://dx.doi.org/10.1103/PhysRevA.90.013628
http://dx.doi.org/10.1103/PhysRevLett.109.205302
http://dx.doi.org/10.1103/PhysRevA.91.013621
http://dx.doi.org/10.1007/BF01099200
http://dx.doi.org/ http://dx.doi.org/10.1063/1.528993
http://dx.doi.org/ http://dx.doi.org/10.1063/1.528993
http://dx.doi.org/10.1007/BF01029221
http://dx.doi.org/10.1007/s002200050182
http://dx.doi.org/10.1007/s002200050182
http://dx.doi.org/10.1142/S0217979299002769
http://dx.doi.org/10.1142/S0217979299002769
http://dx.doi.org/ http://dx.doi.org/10.1016/S0375-9601(99)00774-4
http://dx.doi.org/ http://dx.doi.org/10.1016/S0375-9601(99)00774-4
http://stacks.iop.org/1742-5468/2011/i=11/a=P11017

