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Abstract 

 

We demonstrate optomechanical quantum control of the internal electronic states of a 

diamond nitrogen vacancy (NV) center in the resolved-sideband regime by coupling the NV to 

both optical fields and surface acoustic waves via a phonon-assisted optical transition and by 

taking advantage of the strong excited-state electron-phonon coupling of a NV center.  

Optomechanically-driven Rabi oscillations as well as quantum interferences between the 

optomechanical sideband and the direct dipole-optical transitions have been realized.  These 

studies open the door to using resolved-sideband optomechanical coupling for quantum control 

of both the atom-like internal states and the motional states of a coupled NV-nanomechanical 

system, leading to the development of a solid-state analog of trapped ions.       
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Electromagnetic waves have traditionally been the primary experimental tool for 

controlling a quantum system and for transmitting and distributing quantum information.  There 

has also been strong recent interest in using acoustic or mechanical waves, in particular surface 

acoustic waves (SAWs), for quantum control and on-chip quantum communication of artificial 

atoms. Experimental and theoretical efforts have included coherent coupling of SAWs or 

mechanical vibrations to superconducting qubits[1-3], SAW-based universal quantum 

transducers[4], strain-mediated coupling between a mechanical resonator and artificial atoms 

such as nitrogen vacancy (NV) centers in diamond and semiconductor quantum dots (QDs)[5-

12], mechanical quantum control of electron spins in diamond[13, 14], phononic QED [4, 15], 

and phonon-mediated spin squeezing[16].   

The most successful exploitation of mechanical vibrations for quantum control, however, 

combines both optical and mechanical interactions through phonon-assisted optical transitions or 

sideband transitions, as demonstrated in trapped ions[17-19] and more recently in cavity 

optomechanics[20, 21]. These optomechanical interactions take place in the resolved-sideband 

regime, in which the mechanical frequency, ωm, exceeds the decoherence rate for the relevant 

optical transitions.  For the trapped ion system, the optomechanical processes can control both 

the internal atomic states and the center-of-mass mechanical motion of an atom.  Combining 

these two aspects of optomechanical quantum control has led to thus far the most successful 

paradigm for quantum information processing and has also enabled the generation of exotic 

quantum states such as phonon number states and Schrödinger cat states[17-19].  These 

remarkable successes have stimulated strong interest in pursuing optomechanical quantum 

control of artificial atoms such as QDs and NV centers.  Ground state cooling and spin 

entanglement via optomechanical processes in hybrid nanomechanical systems of QDs or NVs 

have been proposed[22-24].  Resolved sideband emission of a QD coupling to a SAW has also 

been realized[10].  

Here, we report experimental demonstration of optomechanical quantum control of a NV 

center in diamond through the sideband transitions.  We have realized Rabi oscillations of a NV 

center by coupling the NV simultaneously to both optical and SAW fields in the resolved-

sideband regime.  Quantum interferences between the optomechanical sideband and the direct 

dipole-optical (or carrier) transitions have also been observed.  These studies represent a major 

step toward achieving the quantum control of both the internal atom-like states and the motional 
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states of a coupled artificial atom-nanomechanical system.  NV centers in diamond have recently 

emerged as a leading candidate for solid-state spin qubits[25].  With diamond-based micro-

electrical-mechanical systems (MEMS), which can be fabricated in a diamond-on-silicon or bulk 

diamond platform[26-30], the resolved-sideband optomechanical processes demonstrated in our 

studies can be further used for the quantum control of the mechanical motion[23], unlocking the 

extensive toolbox of SAWs and MEMS for quantum science and technology.  

SAWs, such as Rayleigh waves, propagate along the surface or interface of an elastic 

material. Mechanical vibrations of SAWs feature both transverse and longitudinal components 

and extend approximately one wavelength below the surface[31]. These surface waves can be 

generated electrically in a piezoelectric substrate with the use of inter-digital transducers (IDTs).  

High frequency SAW devices have previously been fabricated on diamond[32]. For our samples, 

a 400 nm thick layer of ZnO, which is strongly piezoelectric, was first sputtered onto the 

diamond surface. IDTs with a designed center frequency near 900 MHz were then patterned on 

the ZnO surface with electron beam lithography.  Details on the fabrication of IDTs and the 

generation of SAWs by applying a RF signal to an IDT are presented in the supplement[33].  

Our experimental studies were carried out at 8 K, with the diamond sample mounted in a 

cold-finger optical cryostat.  A confocal optical microscopy setup enables optical excitation and 

fluorescence collection of a single NV[34, 35]. An off-resonant green laser beam (λ=532 nm) is 

used to initialize the NV into the ms=0 ground state.  

For combined mechanical and optical interactions, a NV center situated a few μm below 

the diamond surface is subjected to an incident laser field and also to a SAW propagating along 

the diamond surface (see Fig. 1a). An IDT can serve as a transmitter to excite the SAW and also 

as a detector to characterize the SAW, as shown schematically in Fig. 1b.  The |ms=0> to |Ey> 

optical transition near λ=637 nm is used for the optomechanical quantum control (see Fig. 

1c)[36-38]. The optical excitation spectrum of this transition for a single NV is shown in Fig. 1d.   

  The excitation of long-wavelength acoustic phonons in diamond induces a periodic lattice 

strain.  The orbital degrees of freedom of the excited states of a NV couple strongly to this lattice 

strain, with a deformation potential, D, of several eV.  The electron-phonon coupling can be 

characterized by a strain-induced energy shift as well as state mixing of the relevant electronic 

energy levels[36-38].  For phonon-assisted optical transitions, we consider here the strain-
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induced energy shift of the NV excited state | Ey>, with the electron-phonon interaction 

Hamiltonian given by[24]: 

        ||)ˆˆ( yyphonone EEbbgH ><+= +
− h ,       (1) 

where b̂  is the annihilation operator for the phonon mode, mm mDkg ω2/h=  is the effective 

electron-phonon coupling rate, km is the wave number of the phonon mode, and m is the effective 

mass of the mechanical oscillator.  With the laser field at the red sideband of the optical 

transition (see Fig. 1c), the effective interaction Hamiltonian for the first red sideband transition 

is given by[17],  

             )ˆˆ(
2

0
−
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ω
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where Ω0 is the Rabi frequency for the optical field and ±σ are the raising and lowering operators 

for the two-level optical transition. The effective Rabi frequency for the sideband transition is 

thus given by mng ω/0Ω=Ω , where n is the average phonon number.  A similar Hamiltonian 

can also be derived for the first blue sideband transition.  

Note that earlier experimental studies on mechanical coupling of NV centers have used 

exclusively electron-phonon interactions in the ground-state triplet of the NV centers[5-8, 11-

13].  The ground-state electron-phonon coupling, however, is about six orders of magnitude 

weaker than the excited-state electron-phonon coupling due to the symmetry of the relevant 

wave functions[37, 38].    

We probe the sideband transitions using fluorescence from a NV center driven 

simultaneously by both optical and acoustic waves.  For the photoluminescence excitation (PLE) 

spectrum shown in Fig. 2a, the NV is initially prepared in the ms=0 state and the fluorescence 

from the Ey state is measured as a function of the detuning of the incident laser field from the 

direct dipole-optical transition, with ωm fixed at 900 MHz.  The blue and red sideband 

resonances observed in the PLE spectrum correspond to the Stokes and anti-Stokes phonon-

assisted optical transitions, respectively, while the carrier resonance at zero detuning corresponds 

to the direct dipole-optical transition from the ms=0 to Ey states.  The spectral separation between 

the sideband and the carrier resonance equals ωm, as confirmed by the dependence of the 

sideband spectral position on the RF driving frequency of the IDT (see Fig. 2b).     
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At relatively low optical and SAW powers, the peak amplitude of the sideband resonance 

increases linearly with both the optical and SAW powers (see Figs. 2c and 2d).  In comparison 

with the carrier resonance, the sideband resonances exhibit much weaker saturation and power 

broadening under the same optical powers, as evidenced by the PLE spectra obtained at three 

different incident laser powers shown in Fig. 2e.   The spectral linewidths of the carrier and 

sideband resonances are plotted in Fig. 2f as a function of the incident laser power.  In the low 

power limit, the linewidths of the carrier and sideband resonances both approach 175 MHz, 

which is primarily due to spectral diffusion of the NV center induced by local charge fluctuations 

from repeated initialization of the NV by the green laser beam.  The power broadening of the 

carrier resonance can be accounted for by a simple two-level model.  The broadening also 

provides a measure of the optical Rabi frequency.  From Fig. 2f, we estimate )2/(0 oPπΩ =65 

WMHz/ μ , where Po is the incident laser power[33]. The lack of power broadening for the 

sideband resonances shown in Fig. 2f indicates that under these experimental conditions, Ω is 

still small compared with the NV linewidth.     

Excitations from the ms=0 to Ey states can take place through a sideband transition and 

also through the direct dipole-optical transition (see Fig. 3a), which can lead to quantum 

interference between these two excitation pathways.  To demonstrate this interference, we drive 

the NV center simultaneously through both the red sideband and the direct dipole-optical 

transitions. The two optical fields are derived from the same laser, maintaining well-defined 

relative phase.  The optical field near the carrier resonance is generated with an acousto-optic 

modulator (AOM), which up-shifts the laser field by a frequency, ωAOM.  As shown in Fig. 3b, 

NV fluorescence as a function of ωAOM exhibits a sharp resonance when the frequency of the 

optical field for the direct dipole-optical transition equals the sum of the frequencies of the 

sideband-detuned optical field and the SAW.  The width of the resonance (< 10 Hz) is limited by 

the instrument resolution. Under this resonant condition, the NV fluorescence shows a sinusoidal 

oscillation as we vary the relative phase of the SAW, as shown in Fig. 3c.  This oscillation 

demonstrates the interference between the carrier and sideband transitions and shows that the 

optomechanical processes are fully coherent with the conventional optical processes. A detailed 

theoretical analysis of the sharp interference resonance and the sinusoidal oscillation is presented 

in the supplement[33].      
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In the resolved sideband limit, we can drive the coherent evolution, in particular, the Rabi 

oscillations of the two-level NV system using the optomechanical sideband transitions.  As 

illustrated in the pulse sequence shown in Fig. 4a, to realize the Rabi oscillations we tune a 

continuous optical field onto the red sideband resonance. The acoustic field is turned on for a 

fixed 90 ns increment, followed by a 100 ns rest time to ensure that the NV center has relaxed 

back into the ground state. Fluorescence counts are detected and time tagged relative to the 

beginning of the acoustic pulse (with a bin size of 2.8 ns). This measurement step is repeated 100 

times before a green laser pulse is reapplied.  

With the NV initially prepared in the ms=0 state, the fluorescence from the NV is 

measured as a function of time.  Figure 4b shows the optomechanically driven Rabi oscillations 

obtained at three different RF driving powers for the IDT. As expected, the effective Rabi 

frequency, Ω, for the sideband transition derived from the Rabi oscillations is proportional to the 

square root of the RF driving power (see the inset of Fig. 4b). The estimated damping time for 

the Rabi oscillations is 8 ns. Since the spontaneous emission lifetime of NV centers is about 12 

ns, the decay is also in part due to spectral diffusion (or pure dephasing) of the NV center. A 

detailed theoretical analysis of the Rabi oscillations, including a small background contribution 

from the carrier transition, is discussed in the supplement[33].  Although higher frequency Rabi 

oscillations and thus higher fidelity coherent evolution can be achieved, the time resolution of 

the photon counter (2.8 ns) limits the frequency of the Rabi oscillations that can be detected in 

our current experimental setup.     

The Rabi frequency of the sideband transition obtained from these experiments also 

provides a measurement for the amplitude of the corresponding SAW excitation, given 

by DkA mmSAW /)/)(/(2 0ΩΩ= ω .  With Ω0/2π=290 MHz, Ω/2π=66 MHz, mm k/ω = 5600 m/s, and 

taking D/2π=610 THz[24],  we estimate ASAW=0.7 pm, which is in general agreement with the 

estimated SAW magnitude induced by the IDT, as discussed in the supplement[33].  The 

relatively small mechanical displacement needed for driving the Rabi oscillations reflects the 

strong electron-phonon coupling of the NV excited states.   

The resolved-sideband optomechanical processes realized in the above experiment can be 

further exploited for the quantum control of the motional states of a high-Q diamond 

nanomechanical oscillator that couples to a NV center[23]. For a nanomechanical oscillator with 

ωm=900 MHz and mass about 1 pg, the excited-state electron-phonon coupling can lead to a 
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single-phonon coupling rate of order 2 MHz.  Furthermore, as proposed in an earlier study[24], 

coherent Raman transitions, such as those used in coherent population trapping of NV centers 

[34, 35, 39, 40], can be employed to take advantage of both the strong excited-state electron-

phonon coupling and the ms long ground-state spin decoherence time of NV centers [41].  

In summary, we have demonstrated the quantum control of the internal states of a NV 

center by using optomechanical sideband transitions and by taking advantage of strong excited-

state electron-phonon coupling of NV centers.  Given the exceptionally low mechanical loss of 

diamond[26], NV centers provide a highly promising system for combining the quantum control 

of both the atom-like internal states and the motional states of a coupled NV-nanomechanical 

system through these optomechanical processes. With extensive MEMS and SAW technologies 

available for the engineering of nanomechanical systems, NV centers coupling to a 

nanomechanical oscillator can potentially enable a trapped-ion-like solid-state platform for 

quantum information processing.   

This work is supported by the US National Science Foundation under grants No. 1414462 

and No. 1337711.   
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FIG. 1.   (a) A NV center located near the diamond surface coupling to a laser field and a 
propagating SAW that extends from the thin ZnO layer to about one acoustic wavelength 
(≈6μm) beneath the diamond surface.   (b) Schematic of the sample illustrating the use of IDTs 
fabricated on the piezoelectric ZnO layer to generate and detect SAWs.  (c) Energy level diagram 
illustrating the blue and red sideband transitions for the optomechanical interactions.  The carrier 
transition is between the ms=0 ground state and the Ey excited state of the NV. (d) The excitation 
spectrum of the carrier transition, where NV fluorescence is measured as the laser frequency is 
tuned across the dipole transition (the acoustic field is off). The blue line is a Lorentzian fit.  
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FIG. 2.   (a) Excitation spectrum with the NV driven by both the optical and acoustic fields and 
with ωm=900 MHz. The incident laser power is Po = 0.4 μW and the RF input power is PRF = 0.2 
W.  The blue line is a fit to Lorentzians.  (b) Measured frequency splitting between the carrier 
and the sideband resonances as a function of ωm. For the red line, the frequency splitting = ωm. 
(c) and (d) Amplitudes of the sideband resonances with increasing Po and PRF. Red lines are 
linear least-squares fits. (e) Excitation spectra of the NV obtained for three different Po and with 
PRF = 0.1 W.  The amplitude is normalized to the peak amplitude of the carrier resonance 
obtained with Po = 0.1 μW. Green lines are fits to Lorentzians. (f) Linewidths of the carrier 
(black squares) and red sideband (red circles) resonance as a function of Po, with PRF = 0.1 W.  
Black line is the calculated power broadening. Red line is a liner fit to guide the eye. 
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FIG. 3.  (a) Two pathways, corresponding to the direct dipole transition and the red sideband 
transition, for the excitation of state Ey. The figure also denotes the frequencies and phases of the 
optical and acoustic waves. (b) NV fluorescence as a function of detuning between ω1 and ω2 + 
ωm. Carrier excitation power Po1 = 0.4 μW. Sideband excitation power Po2 = 2 μW. PRF = 0.2 W. 
(c) NV Fluorescence as a function of ϕm, with ω1 – (ω2 +ωm)=0, showing the interference 
between the two pathways.  The red line is a sinusoidal oscillation with a period of 2π.   
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FIG. 4.  (a) Pulse sequence used for the Rabi oscillation experiment. (b) NV Fluorescence as a 
function of acoustic pulse duration. Rabi oscillations (offset for clarity) are shown with estimated 
Ω0/2π = 290 MHz and for three different RF driving powers for an IDT with ωm=940 MHz. 
Solid lines are numerical fits to damped sinusoidal oscillations. Inset: Rabi frequencies obtained 
as a function of the RF power. Red line shows a linear least-square fit. 
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