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We propose a scheme to dynamically synthesize a space-periodic effective magnetic field for neutral atoms

by time-periodic magnetic field pulses. When atomic spin adiabatically follows the direction of the effective

magnetic field, an adiabatic scalar potential together with a geometric vector potential emerges for the atomic

center-of-mass motion, due to the Berry phase effect. While atoms hop between honeycomb lattice sites formed

by the minima of the adiabatic potential, complex Peierls phase factors in the hopping coefficients are induced by

the vector potential, which facilitate a topological Chern insulator. With further tuning of external parameters,

both topological phase transition and topological flat band can be achieved, highlighting realistic prospects

for studying strongly correlated phenomena in this system. Our work presents an alternative pathway towards

creating and manipulating topological states of ultracold atoms by magnetic fields.
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Gauge fields lay at the center of our modern understanding

of physics in systems ranging from high energy to condensed

matter and to ultracold atoms. Within this paradigm, interac-

tions between particles, which enable rich quantum phases of

a many-body system, are mediated through gauge fields. For

instance, solid state materials with charged quasi-particles in

magnetic fields or with spin-orbit coupling (SOC) show a rich

variety of quantum Hall effect and exotic topological super-

conductivity [1, 2]. The interplay between gauge fields and

lattice systems is also of great interests [3]. The spectrum of

a charged particle in a square lattice exposed to a strong uni-

form magnetic field shows a fractal structure, widely known

as the Hofstadter butterfly [4]. In another seminal work, Hal-

dane shows that quantum Hall effect without Landau levels

can be realized when a periodically staggered magnetic field

is applied to charged particles in a honeycomb lattice [5].

Ultracold atoms in lattice systems are considered power-

ful simulators for studying gauge field physics [6–23]. Both

the Hofstadter and the Haldane model with cold atoms were

theoretically proposed [11–14] and experimentally demon-

strated [15–21] by making use of novel forms of light-atom

interactions [7], such as laser assisted tunneling [15–18],

shaking-optical-lattice technique [21] and SOC within a syn-

thetic dimension [19, 20]. In addition to the optical lattice

formed from space-periodic ac-Stark shift by interfering laser

beams, the ideas of generating a magnetic lattice with space-

periodic Zeeman shift are also proposed [24–32] (and some

realized [25–28]), using current-carrying wires [24], micro-

fabricated wires or permanent magnetic structures on atomic

chips [25–30], superconducting vortex lattice shields [31], as

well as phase imprinting by gradient magnetic pulses [32].

In contrast to optical lattices, magnetic lattices are free from

atomic spontaneous emissions that are always accompanied

by heating and loss of atoms. Additionally, they have the po-

tential to reach shorter lattice constants [30, 31] (of a few tens

of nanometers as proposed in Ref. [31]), leading to improved

energy scales and less stringent temperature requirements; the

lattice constants can even be continuously tuned [32]. These

advantageous features enhance the performance of atomic

quantum gases as powerful quantum simulators.

While the simulation of gauge field physics and manipula-

tion of topological states in optical lattices have shown fruitful

results [6–23], it remains to show whether this is also the case

for magnetic lattices. This work provides an affirmative first

answer to this question.

This Letter presents a scheme for synthesizing a time in-

dependent effective Hamiltonian with non-trivial band topol-

ogy for atomic gases with internal spin degrees of freedom,

based on the phase imprinting technique [33, 34]. A two-

dimensional (2D) magnetic lattice with triangular geometry

emerges in the effective Hamiltonian. In the limit when an

atom is confined in the lowest Zeeman level, an adiabatic

scalar potential and a geometric vector potential are simul-

taneously generated for the center-of-mass motion [6, 22, 23].

The adiabatic scalar potential surface can form a honeycomb

lattice, while the associated geometric vector potential pro-

vides complex phases for next nearest neighbor (NNN) hop-

ping coefficients in realizing the Haldane model [5, 35]. With

the flexibility and tunability of magnetic fields, our scheme

can be extended to produce a set of effective Hamiltonians,

whose lowest energy bands undertake a topological phase

transition from a topological (Chern) insulator to a trivial one.

Moreover, models possessing topological quasi-flat bands are

realized near the phase transition point.

The protocol.—We consider a pancake shaped quasi-2D ul-

tracold atomic gas of spin-F confined in the x-y plane (at

z = 0). In the presence of a bias magnetic field B0êz, the

single-particle Hamiltonian is given by

H0 =
p2

2m
+ ~ω0Fz, (1)
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FIG. 1. (Color online) A schematic illustration for synthesizing a

magnetic lattice. (a) An atomic cloud is exposed to a uniform bias

magnetic field B0êz (pointing out of the page), and subjected in se-

quence to four pairs of opposite magnetic pulses as shown in (b).

Pulse pairs 1, 2 and 3 are gradient magnetic fields lying in the x-y

plane along directions separated by 120◦. Pulse pair 4 executes ∓π
spin rotations along the y-direction. The color gradient represents the

corresponding magnetic field strength. (b) The time-periodic pulse

sequence with four pairs of pulses forms one complete evolution pe-

riod. (c) A three-dimensional view of the effective magnetic field

Beff [Eq. (5)], which forms a Skyrmion lattice [39] with its Wigner-

Seitz unit cell shown by the hexagon [of edge length 4π/(3kso)]. The

arrows are colored by the magnitude of the third component of Beff .

where p = (px, py) is the 2D kinetic momentum, m is the

atomic mass, ~ is the reduced Planck constant, Fz is the

third component of the atomic spin vector (in unit of ~)

F = (Fx, Fy, Fz) and ω0 = gFµBB0/~ is the Larmor frequency

at B0, where gF is the Landé g-factor for the spin-F hyperfine

state manifold and µB is the Bohr magneton.

A short gradient magnetic field pulse B′yêy of duration δt′

imprints a space-dependent phase factor [32–34, 36–38] onto

the wavefunction as exp
(

−iksoyFy

)

, where kso = δt
′gFµBB′/~

is the SOC strength [36, 37] with B′ the magnetic gradient.

After a free evolution time δt, a second magnetic field pulse

in the opposite direction imprints an opposite phase. The two

pulses combined together enact a unitary transformation

eiksoyFy Fze
−iksoyFy = Fz cos (ksoy) − Fx sin (ksoy) , (2)

which rotates the magnetic field B0 (0, 0, 1) to a space-periodic

form B0(− sin(ksoy), 0, cos(ksoy)). Similarly, an opposite uni-

form field pulse pair ∓Byêy with a pulse area δt′gFµBBy/~ =

π inverts the magnetic field B0 (0, 0, 1) to B0 (0, 0,−1) as

e−iπFy Fze
iπFy = −Fz. More generally, a gradient magnetic

field pulse along an arbitrary direction êθ = (cos θ, sin θ, 0)

in the x-y plane imprints a phase factor exp (−iksorθFθ), where

rθ = r· êθ = x cos θ+y sin θ and Fθ = F · êθ = Fx cos θ+Fy sin θ

are respectively the coordinate vector r = (x, y) and the spin

vector F projected to the êθ direction. Following a period of

free evolution and a second pulse from an opposite gradient

field, an expression analogous to Eq. (2) generates a magnetic

field with spatial periodicity along the êθ direction.

In our scheme to be discussed below, repeated pulse pairs

are concatenated. A complete cycle of the evolution period

contains three gradient pulse pairs along directions separated

by an angle of 120◦, together with a ∓π pulse pair along y-

direction as shown in Fig. 1(a-b). The total evolution over one

complete cycle (of period T = 4δt) is then given by

U (T, 0) = e−iπFy e−iH0δt/~eiπFy

×
∏

j=3,2,1

e
iksorθ j

Fθ j e−iH0δt/~e
−iksorθ j

Fθ j , (3)

with θ j = − π6 +
2π j

3
. According to the Floquet theorem [40,

41], a time-independent effective Hamiltonian can be defined

according to U (T, 0) ≡ exp (−iHeffT/~). To the lowest order

of T , we find [42]

Heff =
1

2m

(

p − 3

8
~ksoF⊥

)2

+
15

64
~ωsoF2

⊥ + gFµBBeff · F, (4)

where F⊥ = (Fx, Fy) is the 2D spin operator, ωso = ~k
2
so/2m

is the SOC frequency, and Beff is an effective magnetic field

whose three components are given by

Beff,x = −
B0

4

∑

j
sin

(

ksorθ j

)

sin θ j,

Beff,y =
B0

4

∑

j
sin

(

ksorθ j

)

cos θ j,

Beff,z =
B0

4

[

−1 +
∑

j
cos

(

ksorθ j

)

]

.

(5)

The first two terms in Eq. (4) arise from the unitary transfor-

mations by gradient pulse pairs applied to the momentum op-

erator [32, 36]. The third term describes a magnetic (Zeeman)

lattice that couples the atomic spin to the effective magnetic

field Beff, as shown in Fig. 1(c).

Geometric potentials and energy spectrum.—The above

protocol for the generation of a triangular magnetic lattice is

general, and can be applied to atoms with arbitrary spins. For

concreteness, we choose a specific atomic species, fermionic
6Li, with electron spin J = 1/2, nuclear spin I = 1, and con-

sider the total hyperfine spin F = I − J = 1/2 ground state

manifold. The Landé g-factor can be evaluated according to

the Breit-Rabi formula [43] to be gF ≈ −1/3. The spin op-

erator reduces to F = σ/2, where σ is the vector of Pauli

matrices. To be more specific, in all numerical calculations,

we assume a set of fixed parameters unless otherwise noted.

They are B0 = 20 mG, B′δt′ = 2 G cm−1 ms [44], which corre-

spond to kso = (1.7 µm)−1 and ω0 = 32.3ωso = (2π) × 9.3 kHz

for the F = 1/2 manifold of 6Li. With these parameters, the

lattice term in Eq. (4) dominates during time evolution.

We denote the space-dependent eigenstates of the magnetic

lattice by
∣

∣

∣χ1,2(r)
〉

which satisfy,

gFµBBeff ·
σ

2

∣

∣

∣χ1,2(r)
〉

= ±ǫ0(r)
∣

∣

∣χ1,2(r)
〉

, (6)

where ǫ0(r) = −|gFµBBeff|/2 is the adiabatic potential for

atomic center-of-mass motion in the lower energy eigenstate

|χ1〉. For an atom adiabatically moving in this space-periodic

Zeeman level, a vector potential A(r) emerges [42, 45],

A = i~ 〈χ1| ∇χ1〉 +
3

16
~kso 〈χ1|σ⊥ |χ1〉 , (7)

with σ⊥ = (σx, σy). Associated with the vector potential is

the flux density nφ = (∇ × A)z/2π~, which shares the same
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FIG. 2. (Color online) Mapping the effective Hamiltonian [Eq. (4)]

to the Haldane model. (a) The density plot of the adiabatic potential

ǫ0 (in blue color) and its associated vector potential A shown by field

of arrows. Darker color denotes smaller ǫ0, and the minima of which

form a honeycomb lattice, with two sites per unit cell, respectively

denoted by red and green filled circles. The dashed lines denote NNN

hopping paths along directions of positive Peierls phases. (b) The

flux density nφ, in unit of 10−2k2
so. The hexagons in (a) and (b) de-

note the primitive unit cell [the same as in Fig. 1(c)], over which the

net flux is unity. (c) Energy spectrum. Solid lines: the lowest two

energy bands along lines with high symmetry in the first Brillouin

zone (inserted hexagon) for the effective Hamiltonian Eq. (4), with

ω0 = 32.3ωso. Dashed lines: fitted band structure using the Haldane

model results. The edge length of the inserted hexagon is kso/
√

3. (d)

A logarithmal plot of the Berry curvature for the lowest bandΩ1. The

integration of Ω1 in the first Brillouin zone gives its Chern number

C1 = 1.

spatial periodicity as Beff and can be considered as a type of

flux lattice [22] in general.

The adiabatic potential ǫ0, vector potential A, and the flux

density nφ for our magnetic lattice are shown in Fig. 2(a) and

(b) [46]. As shown in Fig. 2(a), the local minima of ǫ0 are

located at the corners of the unit cell, forming a honeycomb

lattice. When an atom hops between these honeycomb sites,

the vector potential contributes a complex Peierls phase factor

exp
(

i
∫

A · dl/~
)

to the hopping coefficient [4, 5, 35], with the

integration evaluated along the corresponding hopping path.

As A vanishes along the edges of the hexagon, the nearest-

neighboring (NN) phase factor is a trivial unity. While along

the NNN hopping paths [dashed lines in Fig. 2(a)], the ac-

cumulated phases are always non-zero. Thus the adiabatic

scalar potential together with the geometric vector potential

realizes the Haldane model in the tight-binding limit. As a

caveat, our flux pattern shown in Fig. 2(b) is not the same

as suggested by Haldane [5], where the staggered flux den-

sity gives a vanishing net flux over a unit cell. The flux dis-

tribution shown in Fig. 2(b) is non-negative everywhere, and

the net flux over one unit cell is unity rather than zero, which

can be checked by integrating over a unit cell the following:

Nφ =
1

4π

∫

UC
dx dy

(

m · ∂xm × ∂ym
)

, with m = Beff/|Beff| [22].

Thus the non-trivial winding pattern of Beff shown in Fig. 1(c)

leads to a quantized net flux Nφ = 1. A non-zero net flux gen-

erally leads to larger Peierls phases (of order unity). It also

promises simulation of charged particles in strong magnetic

field with non-dispersive Landau levels [22, 47].

To quantitatively confirm our model indeed maps onto the

Haldane model, we numerically study the spectrum and Berry

curvature [48] of the effective Hamiltonian Eq. (4) using the

plane wave expansion method [42, 49]. The typical band

structure and the Berry curvature for the lowest band are

shown respectively in Fig. 2(c) and (d). A band gap opens

at the corners of the first Brillouin zone (±K points), where

the Berry curvature is maximum. Both the eigenenergies and

the Berry curvatures are even functions of quasi-momentum,

so the spectrum at K′ = −K is not shown. The Chern num-

bers [50] for the lowest two bands are C1,2 = ±1 respectively.

The spectrum and the Berry curvature thus resemble the ones

from the Haldane model. To further validate this correspon-

dence, we adopt the method used in Ref. [51] to get the NN

hopping constant t1 and the complex NNN hopping constant

|t2|eiφ of the Haldane model from the calculated band struc-

ture. We find t1 = 0.053~ωso and |t2| = 0.0037~ωso with

φ = 0.40. Using these three parameters together with an over-

all energy shift, the tight-binding band structure of the Hal-

dane model is plotted as the dashed lines in Fig. 2(c).

Topological phase transition and quasi-flat bands.—Our

protocol allows for easy tuning of two parameters: the SOC

strength kso = δt
′gFµBB′/~, and the bias magnetic field B0.

Both can be tuned continuously, and can be turned on adi-

abatically to reach the ground state for our model system

Eq. (4) [8, 21] (see [42] for details). Once the ground state

is achieved, we can apply an additional weak optical gradient

field (which commutes with all the pulse manipulation oper-

ations) in the x-y plane to drive Bloch oscillations and then

measure the perpendicular center-of-mass drift to extract the

topological properties for the lowest energy band [17, 21, 52].

With unequal durations between subsequent pulse pairs, or al-

lowing for specific kso and B0 values for different subperiods,

several variants of the effective Hamiltonian can be synthe-

sized. A topological phase transition for the lowest energy

band can be achieved by a simple tuning of the bias magnetic

field. For this to occur, we set the field strength to be B0 for the

first three subperiods and switch to αB0 for the fourth subpe-

riod, our protocol then leads to a change for the z-component

of the effective magnetic field in Eq. (5) as

Beff,z =
B0

4

[

−α +
∑

j
cos

(

ksorθ j

)

]

. (8)

The α = 1 case corresponds to the original proposal with topo-

logical bands, while the α = 0 case describes a system of triv-

ial energy bands with zero Chern numbers. By continuously

tuning α from 0 to 1, a topological phase transition with band

touching and re-opening takes place, as summarized in Fig. 3.

Figure 3(a) presents the changing Chern number, hence the

band topology, for the lowest band with increasing α. The lat-

tice geometry of the adiabatic potential is found to undergo
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FIG. 3. (Color online) Illustration of the structural and topological

phase transition with tuning of the z-component of Beff in Eq. (8).

(a) Top panel: the density plots of the adiabatic potentials for α = 0

(left), α = 0.720 (middle), and α = 1 (right) with the minima (dark

colors) forming simple triangular lattice, decorated triangular lattice,

and honeycomb lattice respectively. Bottom panel: The Chern num-

ber for the lowest energy band as a function of α. A topological

phase transition occurs at the critical point of α = 0.720. (b) The

band gap between the lowest two bands and the band width for the

lowest band, as a function of α. The band gap closes at α = 0.720

(marked by the dotted vertical line). The inset shows the dependence

of band gap-over-width ratio on α. It is peaked at α = 0.749 with a

value 16. (c) The lowest three bands at α = 0.749.

a structural transformation from a simple triangular lattice,

to a decorated triangular lattice [53], and finally to a honey-

comb lattice. The corresponding tight-binding descriptions

for s-orbitals involve 1, 3, and 2 bands respectively for the

three cases. As α increases, the band originating from hop-

ping between s-orbitals located at unit cell centers crosses the

two bands from s-orbitals located at the corners. Their corre-

sponding Chern numbers change after band touching and re-

opening. Figure 3(b) shows the behavior of the gap between

the lowest two bands as well as the band width for the lowest

one. Gap closing occurs at Γ point when α = 0.720, and the

gap-over-width ratio is found to be quite large over a limited

range after gap opening with a peak value as large as 16 when

α = 0.749, as shown in the inset of Fig. 3(b). The energy

spectrum at α = 0.749 is shown in Fig. 3(c). The lowest band

is a Landau-level–like topological quasi-flat one [54]. Such a

non-dispersive topological band also persists beyond the adi-

abatic limit [42]. It is a promising candidate for simulating

fractional quantum Hall effect when suitable interactions are

included [55–58]. It is perhaps worthy pointing out that, flat

band can emerge as the second excited band in a Kagome lat-

tice [53], or as the first excited band in a Lieb lattice [59].

The properties of the localized states in the flat band of a Lieb

lattice have been investigated in a recent experiment [59].

In this work, we focus on discussing single-particle physics

of a fermionic spin-1/2 system, although our magnetic lat-

tice generation protocol can be equally applied to a higher

spin atom, be it a boson or fermion. When local momentum-

independent (s-wave) interaction is taken into account, it

can be simply added to the effective Hamiltonian because

it commutes with all the pulse manipulation operations (see

also [36, 37]). The topological phase is expected to be sta-

ble to weak interactions due to the presence of a gap. How-

ever stronger interaction can drive the system to new phases,

in which the physics may be dominated by the interplay be-

tween correlation and band topology. A detailed study of the

interaction effects for this system deserves further efforts.

In conclusion, we propose an experimentally feasible pro-

tocol to realize a synthetic magnetic field with real magnetic

field pulses. The synthetic magnetic field forms a lattice with

non-trivial band topology, and under certain limits can be

mapped to the Haldane model. The high tunability of our

scheme makes it possible to design a topological phase transi-

tion as well as quasi-flat energy bands with non-trivial topol-

ogy, which can push the effective model into the strongly cor-

related regime.
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