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We propose a simple mechanism to suppress axion isocurvature fluctuations using hidden sector
magnetic monopoles. This allows for the Peccei-Quinn scale to be of order the unification scale
consistently with high scale inflation.

Introduction. Cosmic inflation addresses many is-
sues in early universe cosmology [1–3]. An exciting aspect
of inflation is that it sources gravitational waves. If infla-
tion occurs at a sufficiently high scale (∼ 1015–1016 GeV),
the amplitude of these gravitational waves is large enough
to leave a measurable imprint on the polarization of the
cosmic microwave background (CMB) [4]. A number of
CMB polarization experiments are presently searching
for this signal [5], and a positive signal would have im-
portant implications for particle physics. In particular,
bosonic fields with masses smaller than the inflationary
Hubble scale are efficiently produced by inflation and can
cause isocurvature perturbations in the CMB [6]. High
scale inflation thus leads to interesting constraints on
ultra-light bosons, including the QCD axion.

It is widely regarded [7] that a discovery of inflationary
gravitational waves would rule out the QCD axion with a
decay constant fa & 1016 GeV, a range that is favored by
several theoretical considerations [8]. Experiments have
also been proposed to search for the QCD axion in this
parameter range [9], and it is of great interest to delin-
eate the viable parameter space accessible to these efforts.
While the bound discussed here disappears if the QCD
axion acquires a large mass during inflation, and models
achieving this do exist (see [10] for example), they face
the difficulty that the mechanism responsible for gener-
ating a large axion mass during inflation has to violate
the Peccei-Quinn symmetry while ensuring that this vi-
olation remains sufficiently sequestered from the axion
after inflation. Other proposals to alleviate the tension
between high scale inflation and the QCD axion include
a dynamically changing Peccei-Quinn breaking scale [11],
which, however, sacrifices some of the theoretical argu-
ments underlying high fa axions. There are also attempts
that involve transfer of the axion isocurvature from one
species to another [12], but these typically deplete the
dark matter abundance of the axion, eliminating one of
the promising ways to search for them. It might also be
possible to relax the constraints by dumping entropy into
the universe around the QCD phase transition [13], but
these channels are rather constrained [7]. Other relevant
attempts include Refs. [14–20].

In this paper, we investigate an alternative possibility:
what if the QCD axion acquires a large mass after in-
flation, which subsequently disappears before the QCD

phase transition? If this mass is larger than the Hubble
scale during a large interval, between the reheating and
QCD scales, then the axion field oscillates earlier and the
fluctuations in the field will be damped. When this mass
(and potential) subsequently disappears, the average ax-
ion field takes a value corresponding to the minimum of
the potential that generated this large mass. Since this
minimum is in general displaced from the QCD mini-
mum, the axion regains its cosmic abundance when it
reacquires a mass from QCD, enabling it to be dark mat-
ter. The isocurvature perturbations will be small since
the initial evolution of the field causes the perturbations
to coalesce around the initial minimum, while the sub-
sequent dark matter abundance is generated by homoge-
neous condensations.

How can we give such a large initial mass that then dis-
appears? We accomplish this by coupling the QCD axion
to a new U(1)′ gauge group. If the reheating produces
magnetic monopoles under this U(1)′, the monopole den-
sity generates a mass for the axion [21]. This is because
topological terms like FF̃ become physical in the pres-
ence of magnetic monopoles due to the Witten effect [22].
Specifically, it gives a free energy density that depends on
a background axion field, thus creating an effective mass
for the axion. This mass is sufficient to damp isocurva-
ture perturbations in the axion field. After the pertur-
bations have been damped, the monopole density can be
efficiently eliminated by breaking U(1)′. The monopole
density forces the axion field to relax into a value chosen
by CP phases in the U(1)′ sector. Since this phase need
not be aligned with the QCD minimum, the axion gen-
erally acquires a homogeneous cosmic abundance during
the QCD phase transition, with suppressed isocurvature
perturbations. For large fa ≫ 1012 GeV, this misalign-
ment needs to be small, but this can be environmentally
selected [23]. We will show that there is sufficient time
for damping axion isocurvature fluctuations so that ax-
ion dark matter with a unification scale fa is consistent
with high scale inflation giving an observable size of the
gravitational wave polarization signal.

Required Damping of Isocurvature Perturba-
tions. Inflation generally induces quantum fluctuations
of order Hinf/2π for any massless field, where Hinf is the
Hubble parameter during inflation. This implies that
if U(1)PQ is broken before or during inflation, then the
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angle θ = a/fa of the axion field a has fluctuations
δθ(TR) ≈ Hinf/2πfa at reheating temperature TR.

1 Since
the axion potential is flat during inflation, these fluctua-
tions are of isocurvature type.
There is a tight constraint on the amount of allowed

isocurvature perturbations from the Planck data [24],
which can be written as (see, e.g., [18])

Ωa

ΩDM

δθ(TQCD)

θmis

. 4.8× 10−6, (1)

where θmis is the average axion misalignment angle, while
δθ(TQCD) is the angle fluctuation at temperature TQCD ∼
1 GeV. Here, Ωa and ΩDM ≃ 0.24 represent the axion
and total dark matter abundances, respectively, and we
assume θmis > δθ(T ) throughout. Using the expression
for the axion relic density

Ωa

ΩDM
≈ 1.0× 105 θ2mis

(

fa
1016 GeV

)1.19

, (2)

we may rewrite Eq. (1) as

δθ(TQCD) . 1.5× 10−8

√

ΩDM

Ωa

(

1016 GeV

fa

)0.6

. (3)

Assuming the standard cosmological history after infla-
tion, δθ(TQCD) ≈ δθ(TR), so that we find

Hinf . 9.4× 108 GeV

√

ΩDM

Ωa

(

fa
1016 GeV

)0.4

. (4)

This severely constrains inflationary models in the pres-
ence of a unification scale axion [7]. In particular,
unification scale axion dark matter—Ωa = ΩDM and
fa ∼ 1016 GeV—is inconsistent with unification scale

inflation—Einf ≡ V
1/4
inf ∼ 1016 GeV, which leads to

Hinf = E2
inf/

√
3M̄Pl ∼ 1013 GeV, where M̄Pl ≃ 2.4 ×

1018 GeV is the reduced Planck scale.
Below, we discuss a scenario in which axion isocur-

vature fluctuations are damped due to dynamics after
inflation. Defining the (inverse) damping factor ∆ by

∆ =
δθ(TQCD)

δθ(TR)
, (5)

Eq. (3) yields

∆ . 1× 10−4

√

ΩDM

Ωa

(

fa
1016 GeV

)0.4(
1013 GeV

Hinf

)

,

(6)
the required amount of damping.

1 In this paper we adopt the instant reheating approximation for
simplicity. An extension to more general cases is straightforward.

Basic Mechanism. Our basic idea is that the axion
mass obtains extra contributions beyond that from QCD
in the early universe so that it is larger than the Hub-
ble parameter in some period. In this period, damped
oscillations of the axion field reduces axion isocurvature
perturbations giving ∆ < 1.
We achieve this by introducing a coupling of the axion

to a hidden U(1)′ gauge group2

L ∼ 1

fa
aF ′µν F̃ ′

µν . (7)

We assume that at some temperature TM after inflation
(TM . TR ≈ Einf), monopoles of U(1)′ are created. This
can happen, for example, if a hidden sector SU(2)′ gauge
group is broken to U(1)′ at that scale. In the presence of
magnetic monopoles, the coupling in Eq. (7) induces an
effective mass for the axion [21]:

m2
a(T ) = γ

nM (T )

fa
, (8)

where γ is determined by the structure of the U(1)′ sec-
tor. nM (T ) is the number density of the monopoles; as-
suming the abundance determined by the Kibble-Zurek
mechanism [25], we find

nM (T ) ≈ α

(

T

TM

)3

H(TM )3, (9)

where H(T ) is the Hubble parameter at temperature T ,
and α & 1.3 The contribution of Eq. (8) makes the effect
of the axion mass dominate over the Hubble friction

ma(T ) & 3H(T ), (10)

below some temperature Ti (≤ TM ), so that the axion
field is subject to damped oscillations for T . Ti.
We assume that U(1)′ is spontaneously broken at some

temperature Tf (≪ Ti), so that monopoles quickly disap-
pear. Axion isocurvature fluctuations are then damped
efficiently between temperatures Ti and Tf . Suppose

m2
a(T ) ∝ T n, (11)

(n = 3 for a constant γ). Since the axion “number den-
sity”ma(T )δθ(T )

2 scales as T 3 while Eq. (10) is satisfied,
we find

δθ(T ) ∝ T p, p ≈ 6− n

4
, (12)

2 We assume that the relevant anomaly coefficient, with respect
to U(1)′, is large enough that the coefficient in front of Eq. (7)
is not much smaller than order unity. If this is not the case,
temperatures Ti and Tf below become smaller (e.g. because γ̃ in
Eq. (14) is smaller than order unity), which may result in extra
constraints on the U(1)′ gauge sector.

3 α can be much larger than O(1), depending on the dynamics
of the phase transition; see e.g. [26]. In this case, monopole-
antimonopole annihilations at T ∼ TM may become important.
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in this period. The final damping factor is thus

∆ ≈
(

Tf

Ti

)
6−n
4

, (13)

which can be compared with the required amount of
damping from observations, Eq. (6).

The average axion field 〈θ〉 = 〈a〉/fa, after this mech-
anism operates, is determined by the structure of the
hidden sector, which in general differs from the mini-
mum of the late-time axion potential, θQCD. A homoge-
neous displacement of the axion field from θQCD deter-
mines the late-time axion dark matter abundance. For
fa ≫ 1012 GeV, the value of this displacement must be
small, but it can be environmentally selected to be con-
sistent with Ωa ≤ ΩDM [23].

Minimal Model. Suppose the U(1)′ sector below
TM contains only a charged scalar field ϕ, which breaks
U(1)′ at scale Tf (≪ TM). In this case, the factor γ in
the expression for the induced axion mass, Eq. (8), is

γ ≈ γ̃
TM

fa
, (14)

where we have used TM . fa, and γ̃ ≈ O(1) assuming
an O(1) U(1)′ gauge coupling. The axion mass just after
the monopole production is then

ma(TM )

3H(TM)
≃ 0.2

√

αγ̃ g
1

4

∗M

√

T 3
M

f2
aM̄Pl

, (15)

where we have used H(TM ) = ρ(TM )1/2/
√
3M̄Pl and

ρ(TM ) = (π2/30)g∗MT 4
M with g∗M being the effective

number of relativistic degrees of freedom at temperature
TM . Assuming that TM is not much smaller than the
unification scale, this number is not too far from order
unity. The axion field thus starts having damped oscilla-
tions at T ∼ Ti, within a few orders of magnitude from
TM . Specifically

Ti ≃ 1×1011 GeVαγ̃

√

g∗M
100

(

1016 GeV

fa

)2 (
TM

3× 1015 GeV

)4

.

(16)
Note that if Ti in this expression exceeds TM , then Ti

must be set to TM .

At temperatures below Ti, axion isocurvature fluctua-
tions are damped. Since Eq. (14) implies n = 3, so that
p ≈ 3/4 (see Eq. (12)),

δθ(T )

δθ(Ti)
≈

(

T

Ti

)
3

4

. (17)

Therefore, to avoid the observational constraint of

Eq. (6), we need

Tf .2× 105 GeVαγ̃

√

g∗M
100

(

ΩDM

Ωa

)
2

3

×
(

TM/Einf

0.3

)4 (
1016 GeV

fa

)1.5 (
Einf

1016 GeV

)
4

3

,

(18)

(substituting Hinf ≈ E2
inf/

√
3M̄Pl). The required value of

Tf is generated by Vhid = λ′
(

|ϕ|2 − v′2
)2
, with v′ ≈ Tf .

We find that unification scale axion dark matter with
unification scale inflation can be made consistent by our
mechanism.
Incidentally, ignoring U(1)′ breaking, monopoles dom-

inate the energy density of the universe at

T∗ ≃ 6×106 GeVα

√

g∗M
100

(

TM

3× 1015 GeV

)3 (
mM

3× 1015 GeV

)

,

(19)
which is slightly above the upper bound in Eq. (18).
Here, mM is the monopole mass. This implies that the
universe may be monopole dominated toward the end of
the damped oscillation period, Tf . T . Ti.
Monopole Annihilations. After U(1)′ is broken

at some temperature TS (∼ Tf), monopoles and anti-
monopoles become connected by strings. For monopole-
antimonopole annihilations to occur, the string-monopole
system must lose their energies, and there are several pro-
cesses that can contribute to this energy loss.
We assume the existence of a renormalizable coupling

between the U(1)′ and standard model sectors, e.g. a
quartic coupling between the U(1)′ breaking and stan-
dard model Higgs fields or a kinetic mixing between U(1)′

and U(1) hypercharge:

L ∼ ǫ ϕ†ϕh†h, ǫF ′
µνF

µν
Y . (20)

We will find that monopoles quickly disappear, well
within a Hubble time, unless the coupling ǫ is signifi-
cantly suppressed. Note that cosmic strings formed by
U(1)′ breaking are harmless for TS . 1015 GeV [27].
(i) Monopole friction. Suppose the correlation length

of ϕ is of order or larger than the average dis-
tance between monopoles, d(TS) ∼ nM (TS)

−1/3 ∼
M̄Pl/α

1/3TSTM , at T ∼ TS . In this case, strings will
connect monopoles through the shortest possible path,
and the energy of a monopole-antimonopole pair to be
dissipated is E0 ∼ η d(TS) ∼ M̄PlTS/α

1/3TM , where we
have estimated the string tension η to be of order T 2

S .
If the monopoles scatter with a thermal bath of tem-

perature TS through a coupling of strength ǫ, as in
Eq. (20), then the energy loss rate due to friction is
Ė ∼ −ǫ2T 2

Sv
2 [28]. Here, v is the velocity of the

monopoles, which is given by ∼ (T 2
Sd(TS)/mM )1/2 ∼

(TSM̄Pl/α
1/3T 2

M )1/2 if TS ≪ α1/3T 2
M/M̄Pl and ∼ 1 oth-

erwise. In each case, the annihilation timescale τann ∼
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|E0/Ė| is given by

τann ∼







TM

ǫ2T 2

S
for TS ≪ α1/3T 2

M

M̄Pl

,

M̄Pl

ǫ2α1/3TSTM
for TS &

α1/3T 2

M

M̄Pl

.
(21)

We find that in both cases, τann is of order or shorter
than the Hubble timescale, tS ∼ M̄Pl/T

2
S , unless ǫ is

much smaller than of order unity. For TM ∼ 1015 GeV
and TS ∼ 105 GeV, this requires ǫ2 & 10−3 (assuming
α ≫ 10−21).
(ii) Particle production from strings. If the correlation

length of ϕ at TS, ξ(TS), is much smaller than the average
monopole distance, then we expect that a string connect-
ing a monopole-antimonopole pair to have a significant
number of kinks (from a Brownian formation), and par-
ticle production from the string contributes significantly
to the dissipation.
Based on the analysis in Ref. [28], we estimate that

the power for a string of thickness δ to radiate standard
model particles is P ∼ ǫ2/δ ξ(TS) per a portion of a string
of length ξ(TS).

4 In the case of Brownian strings, the av-
erage string length is given by L ∼ d(TS)

2/ξ(TS), so that
the total energy of the string-monopole system to be dis-
sipated is E0 ∼ ηL ∼ T 2

S d(TS)
2/ξ(TS) and the emission

power from it is Ė ∼ PL/ξ(TS) ∼ ǫ2TS d(TS)
2/ξ(TS)

3,
where we have used η ∼ T 2

S and δ ∼ 1/TS. The
monopole-antimonopole annihilation timescale is thus

τann =
E0

Ė
∼ 1

ǫ2
TS ξ(TS)

2 ≪ 1

ǫ2
TS d(TS)

2 ∼ M̄2
Pl

ǫ2α2/3TST 2
M

.

(22)
Again, this is of order or shorter than the Hubble
timescale unless ǫ is much smaller than order unity. For
TM ∼ 1015 GeV and TS ∼ 105 GeV, this requires
ǫ2 & 10−7/α2/3.
Since annihilation is quick regardless of the ϕ corre-

lation length, possible increase of the correlation length
due to interactions of the strings with the thermal bath
(which we ignored here but may become important for
TS . T 2

M/M̄Pl) does not affect our conclusion.
Technical Naturalness of U(1)′. In our minimal

model, U(1)′ breaking was achieved by a scalar field
ϕ whose potential contained a scale v′, which is not
radiatively stable. In this section, we discuss exten-
sions/modifications of the minimal model in which the
issue of radiative stability does not arise.
(i) Supersymmetric U(1)′ sector. One way to con-

struct a technically natural model is to make the U(1)′

sector supersymmetric. This requires promoting ϕ to

4 The process of energy dissipation may be much faster, P ∼

ǫ2η(δ/ξ(TS ))
1/3, if cusps form efficiently [29]. Here we adopt

a conservative estimate, which is sufficient to eliminate the
monopoles quickly.

chiral superfields Φ(+1) and Φ̄(−1). The complication
arises because the induced axion mass is suppressed in
the presence of light fermions charged under U(1)′ [21].
To obtain a significant contribution to the axion mass,
we need to have a supersymmetric mass for Φ and Φ̄:

W = MΦΦΦ̄. (23)

The breaking of U(1)′ is then caused by supersymmetry-
breaking squared masses for Φ and Φ̄ of order m̃2 ∼ T 2

S .
To maximize the axion mass, we also take MΦ ∼ TS .

5

The coupling between the U(1)′ and the standard model
sectors needed for monopole annihilations can be taken
as a kinetic mixing between U(1)′ and U(1) hypercharge:
L ∼ ǫ [W ′αWY α]θ2 . This implies that the standard model
sector is also supersymmetric above ∼ (4π/ǫ)m̃.
With this setup, the induced axion mass is given by

Eq. (8) with

γ ≈ MΦ

fa
∼ TS

fa
. (24)

Plugging this into Eq. (18) with TS ∼ Tf , we find that
α must be much larger than 1 for the model to work.
We thus suppose that the dynamics of the phase tran-
sition producing monopoles is such that α ≫ 1. The
largest possible abundance of monopoles obtained in this
case is determined by the freezeout abundance (instead
of Eq. (9)), which is given by [31]

nM (T ) ≈
(

T

TM

)3 √
g∗MT 4

M

M̄Pl

. (25)

The axion mass at T ∼ TM is then

ma(TM )

3H(TM )
∼

√

TSM̄Pl

g
1/4
∗Mfa

, (26)

so that the axion field starts damped oscillations at

Ti ∼
TSTMM̄Pl√

g∗Mf2
a

. (27)

This gives the damping factor of

∆ ≈
(

Tf

Ti

)
3

4

∼
(

f2
a

TMM̄Pl

)
3

4

. (28)

We find that the mechanism is not as strong as in the
minimal model, but it can still save the scenario with fa,
TM , Einf as large as ∼ 1015 GeV.
(ii) Possibility of unbroken U(1)′. We finally men-

tion an alternative (and very different) possibility that

5 The coincidence of the scales m̃ and MΦ is analogous to the µ
problem in the minimal supersymmetric standard model, which
can be addressed, e.g., as in Ref. [30].
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U(1)′ monopoles may be efficiently eliminated without
breaking U(1)′. This may happen if the monopole under
consideration is in fact a dyon that also carries a charge
under a hidden non-Abelian gauge group G′ (to which
the axion field does not couple). In this case, if G′ con-
fines at a scale Λ′, then dyons can be subjected to extra
strong annihilation processes.
Suppose the G′ sector contains light particles that

are electrically charged under G′. When G′ confines at
T ∼ Λ′, dyons pick up these light particles, becoming G′

hadrons. The dyon-antidyon annihilation cross section is
then expected to become large ∼ 1/Λ′2, as in the anal-
ogous situation for a heavy stable colored particle [32].
This will efficiently eliminate dyons if Λ′ . 100 TeV,
hence giving Tf ∼ Λ′. Since this scenario does not re-
quire U(1)′ breaking, the U(1)′ sector need not have a
light charged scalar or fermion. Further studies of this
possibility, including a detailed analysis of whether dyon
annihilation is indeed strong enough, are warranted.
Conclusions. Because the axion provides a leading

solution to the strong CP problem, it is important to
fully study its consistency. If a future CMB experiment
discovers inflationary gravitational wave signals, it would
exclude naive axion models with the Peccei-Quinn sym-
metry broken before the end of inflation. Our mechanism
makes the QCD axion alive even in such a case, without
requiring the Peccei-Quinn symmetry breaking scale to
be below the inflationary scale. This is particularly im-
portant for a string axion, which has a virtue that explicit
breaking of the Peccei-Quinn symmetry (which needs to
be extremely small to solve the strong CP problem [33])
is generated only at a nonperturbative level [8]. Our
mechanism allows for a string axion to be a consistent
solution to the strong CP problem even if inflationary
gravitational wave signals are discovered, and it would
also keep open the possibility that axion dark matter
may be discovered by high precision experiments such as
those proposed in Ref. [9].
Note added: While completing this paper, we re-

ceived Ref. [34] which discusses a similar idea.
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