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We establish a precise connection between discrete wavelet transforms (WTs) and entanglement
renormalization (ER), a real-space renormalization group transformation for quantum systems on
the lattice, in the context of free particle systems. Specifically, we employ Daubechies wavelets to
build approximations to the ground state of the critical Ising model, then demonstrate that these
states correspond to instances of the multi-scale entanglement renormalization ansatz (MERA),
producing the first known analytic MERA for critical systems.

PACS numbers: 05.30.-d, 02.70.-c, 03.67.Mn, 75.10.Jm

In recent years tensor networks [1] have emerged as an
exciting approach to both quantum mechanics and statis-
tical mechanics that combine ideas of many-body physics
with quantum information, while closely connecting sim-
ulation and analytic theory. An intriguing development
within tensor networks is the multi-scale entanglement
renormalization ansatz (MERA) [2–4], designed to im-
plement real-space renormalization group (RG) [5] ideas
in a powerful numerical algorithm which accurately cap-
tures scale invariance and critical point behavior.
For a D-dimensional physical system, the MERA is

constructed as a (D + 1)-dimensional tensor network,
where layers in the extra dimension encode ground state
correlations at different length scales. Within a numer-
ical setting, MERA have been demonstrated [6–12] to
accurately capture the critical long range behavior of lat-
tice versions of conformal field theories (CFTs) [13, 14],
which are used to describe critical points. MERA also
provides a framework to investigate the AdS/CFT cor-
respondence, with the extra dimension of the MERA as-
sociated with a physical space-time dimension, making
tensor networks an important topic in quantum gravity
and string theory [15, 16].
Wavelets and wavelet transforms (WTs) [17–21], one

of the most significant developments in signal and image
processing in several decades, are also closely tied to RG:
ideas from RG influenced the development of wavelets,
and wavelets have proved to be a useful tool in RG ap-
plications [22]. In fact, it is natural to think of com-
pact, orthogonal WTs, such as the well-known families
of WTs introduced by Daubechies[17, 20], as being real-
space RG transformations, but in the space of ordinary
1D functions rather than in terms of Hamiltonians or La-
grangians. Given the close connections to real-space RG
of both MERA and wavelets, it is natural to ask if these
two methods are connected more deeply to each other.

Here we show that this is, indeed, the case, and re-
port on a precise relation between WTs and the MERA;
that a wavelet analysis of a free particle system can be
exactly mapped to a MERA. An important development
results from this connection: we find the first analytic

MERA that accurately approximates the ground state

of a critical system, whereas previous constructions have
always resulted from a complicated variational optimiza-
tion. For the lowest order case, the two unitary gates w
and u that constitute a (binary) scale-invariant MERA
[4, 6] can be written in a remarkably compact form,
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where X , Y , Z are Pauli matrices, and where ZZ is short
for Z ⊗ Z etc. Here unitary u is the so-called disentan-
gler of the MERA, while w becomes the isometry of the
MERA once the second input spin is fixed in the | ↑〉
eigenstate of Z. This MERA, which is derived using two
copies of the Daubechies D4 wavelet, can be shown to ap-
proximate the ground state of the quantum critical Ising
model, including the critical data of the Ising CFT. We
also present a general prescription for obtaining higher
order MERA and give another specific example. These
analytic constructions provide an important new tool for
making further progress in MERA applications, and are
likely just the first example of important results from the
wavelet-MERA connection.
Free Fermions.—We consider the tight-binding Hamil-

tonian on an infinite 1D lattice of spinless fermions at
half-filling,

Hff = −
∑

r

(

â†r+1âr + â†râr+1

)

, (2)

with â and â† the annihilation and creation operators. In
terms of the Fourier mode creation operators b̂†k, where
k is the momentum, the ground state of H is given by
occupying the negative energy modes,

|ψGS〉 =
∏

|k|<π/2

b̂†k |0〉 (3)

while leaving positive energy modes unoccupied.
Wavelets.— We would like to use wavelets to find an-

other set of modes {ĉLowz }, more localized than plane
waves, but composed almost entirely of linear combina-
tions of negative energy states, so that the ground state
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FIG. 1. (a) Plots of D4 Daubechies wavelets qz(r) and scaling
functions sz(r) for scales z = 1, 2, together with their Fourier
spectra Qz(k) and Sz(k). (b) The quantum circuit, built from
gates v(θ) of Eq. 10 with angles θ1 = π/12 and θ2 = −π/6,
implements the linear map of fermionic modes, see Eq. 12,
corresponding to the D4 wavelet transform.

is approximated by filling these modes,

|ψGS〉 ≈
∏

z

(

ĉLowz

)†
|0〉 (4)

Correspondingly, there will also exist a set of modes
{ĉHigh

z } composed of linear combinations of positive en-
ergy states, which are unoccupied in the ground state.
The accuracy of the separation into low and high en-
ergy states must be increasingly sharp as one looks more
closely near the Fermi surface, which suggests we re-
quire a WT that targets the Fermi points, ±π/2. On
the other hand, standard WTs, such as Daubechies
wavelets [17, 18], are designed to approximately divide
the Fourier components into low (scaling function) and
high (wavelet) parts at each scale, see Fig. 1(a), such
that they resolve degrees of freedom close to momentum
k = 0. Thus a direct application of knownWTs is not suf-
ficient to approximate the ground state |ψGS〉. However,
we will show that it is possible to combine two slightly
modified Daubechies WTs to give an excellent separation
of negative and positive energies, targeting k = ±π/2.
Let us consider the Daubechies D4 wavelets (see Ref.

[23] Section A for an introduction). We denote by qz(r)
the wavelet function at scale z, and Qz(k) its (discrete)
Fourier transform. At the smallest z = 1 scale, the
D4 wavelet has support on 4 sites, where it has val-
ues q1 ≈ [−0.483, 0.837,−0.224,−0.129], while wavelets
at larger scales qz, which are supported on intervals of
r = 2z+1 + 2z − 2 sites, can be easily obtained from
q1 using the cascade algorithm [21]. At level z the ba-
sis includes all translations of qz by d = n2z sites (for
integer n). The set of all wavelets–every level z, with
all appropriate translations, form a complete, orthonor-
mal basis of functions. The Daubechies wavelets are de-
signed as high-pass filters, such that they are orthogonal

to smooth functions (or, equivalently, functions that only
possess low frequency components). Specifically, the D4
wavelets have two vanishing moments about k = 0,

Qz (0) = 0,
∂Qz

∂k

∣
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∣

∣

k=0

= 0, (5)

for all scales z, see also Fig. 1(a).

We now construct modified wavelets which have the
vanishing moments at the Fermi points, k ± π/2, rather
than k = 0. We first we multiply the wavelets by a phase
ω(r) = exp(iπr) and then dilate by a factor of two, but
with the in-between sites set to zero(!):
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, r odd
0, r even

(6)

Similarly we construct wavelets q̃evenz that only have sup-
port on the even sublattice. This transformation into
odd and even sublattice parts seems more natural if one
considers the real linear combinations of the Fermi points
sin(rπ/2) and cos(rπ/2), which are zero on even and odd
sublattices, respectively. The key result is that the fre-
quency space representation of these wavelets Q̃odd

z (k)
now have vanishing moments at k = ±π/2,
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2
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∣

∣

±π
2

= 0, (7)

and similarly for Q̃even
z .

The modified wavelet functions are localized, in Fourier
space, increasingly close to the Fermi points at larger
scale z; however, they are still not sufficient to approx-
imate the ground state |ψGS〉 as they contain a mixture
of negative and positive energy components. To separate
the energy components, we form coherent low lz(r) and
high hz(r) wavelet pairs by taking symmetric and anti-
symmetric combinations respectively of q̃oddz and q̃evenz ,

lz(r) = q̃oddz (r) + q̃evenz (r0 − r)

hz(r) = q̃oddz (r)− q̃evenz (r0 − r). (8)

The constant r0, which determines the spatial alignment
of the odd and even wavelets, should be chosen in order to
form wavelets with the best separation of energies; here
this choice is such that the support of an even wavelet
starts three sites before that of an odd wavelet it is paired
with (see Ref.[23] Section B for details).
The symmetric and anti-symmetric wavelet pairs lz(r)

and hz(r), together with their frequency spectra, are
plotted in Fig. 2(a) for scales z = 1, 2. It can be seen
that they separate negative and positive energies nicely,
with lz(r), to very good approximation, only containing
frequencies |k| < π/2 (and vice-versa for hz(r)). Thus,
if we use the wavelets lz(r) and hz(r) to define a linear
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FIG. 2. (a) Plots of low frequency lz(r) and high frequency
hz(r) wavelets from Eq. 8, together with their Fourier spectra
Lz(k) andHz(k), for scales z = 1, 2. (b) Quantum circuit that
approximates the free fermion ground state by setting modes
corresponding to low frequency lz wavelets in the occupied
|1〉 state and high frequency hz wavelets in the unoccupied
|0〉 state. The circuit is built from gates v(θ) as defined in
Eq. 10 with angles θ as indicated, and v0 represents a phase
gate with angle π.

mapping of fermionic modes,

ĉLowz =
∑

r

ârlz(r),

ĉHigh
z =

∑

r

ârhz(r), (9)

then the ground state |ψGS〉 of the free fermion model Hff

can be approximated by occupying the negative energy
modes ĉLowz as per Eq. 4.
Quantum circuit.— Through Eqs. 6, 8 and 9 we have

identified a discrete wavelet transform of fermionic modes
that can be used to approximate the free fermion ground
state. We now describe how this transform of fermionic
modes can be realized as a quantum circuit, employing a
formalism similar to that of Refs.[24–26], and argue that
this circuit corresponds precisely to a MERA [4].
We restrict to a circuit built from two-site unitary gates

v that preserve particle number,

vr,r+1 (θ) =









1 0 0 0
0 cos (θ) − sin (θ) 0
0 sin (θ) cos (θ) 0
0 0 0 1









(10)

written in the number basis {|00〉 , |01〉 , |10〉 , |11〉} for
some angle θ ∈ [−π, π]. It is known that unitary gates

v(θ) map fermionic modes linearly, such that, under ac-
tion of v(θ), a pair of fermionic modes âr and âr+1 is

mapped to a new set of modes d̂r and d̂r+1,

[

d̂r
d̂r+1

]

≡

[

cos (θ) sin (θ)
− sin (θ) cos (θ)

] [

âr
âr+1

]

. (11)

Any unitary linear map on M fermionic modes can be
decomposed as a product of such two-site maps, hence
can also be expressed as a quantum circuit built from
the unitary gates v(θ) of Eq. 10. It follows that an or-
thogonal wavelet transform, which implements a unitary
map of fermionic modes [28],

ĉz =
∑

r
ârqz(r), (12)

where qz(r) are the wavelet coefficients at scale z, can
also be expressed as a unitary circuit built from gates
v(θ). Fig. 1(b) shows the circuit diagram for the D4
wavelets, which is built from two distinct unitary gates:
{v(π/12), v(−π/6)}. The structure of this circuit follows
from the fast wavelet transform algorithm [29], which im-
plements the WT on 2M sites throughM recursive appli-
cations of a filter bank, and thus allows the circuit to be
organized into M layers. The filter bank corresponding
to a WT of 2N coefficients can be further decomposed
into a depth N circuit of gates {v(θ1), v(θ2), . . . , v(θN )},
where the angles θi are fixed from the WT under con-
sideration, see Refs.[26, 27] for additional details. Notice
that the circuit of Fig. 1(b) corresponding to the D4
wavelet is precisely a scale-invariant MERA. In a higher
order WT, such as the D2N Daubechies wavelets with
N > 2, the circuit would have N levels of unitary gates
v(θi) in each layer and thus no longer correspond to a
standard MERA; however under appropriate grouping of
gates, see Ref.[23] Section C, one could reinterpret this
as a MERA of larger bond dimension.
Two copies of the circuit representation of the D4

wavelets can then be combined to construct the modified
wavelet transform of Eqs. 8 and 9 that approximates the
free fermion ground state, as depicted in Fig. 2(b). Here
one copy of the circuit for the D4 WT is implemented on
the odd sublattice, and is overlaid with a second circuit
(spatially mirrored with respect to the first) on the even
sublattice. Note that the spatial mirroring is equivalent
to negating the sign of the unitary angles, such that the
second circuit is comprised of gates {v(−π/12), v(π/6)}.
These two circuits are then coupled by v(−π/4) gates,
which generate the symmetric/antisymmetric wavelets
described in Eq. 8.
The combined circuit depicted in Fig. 2(b) consists

of an identical sequence of scale-invariant layers, labeled
{U1, U2, . . .}, but also includes an initial ‘transitional’
layer V at the bottom. The transitional layer serves
two purposes, (i) firstly it includes local unitary oper-
ators v0 = â†â − ââ† that implement the phase change
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described in Eq. 6, and (ii) secondly, it includes an ex-
tra set of swap gates required to give the proper wavelet
alignment r0 in Eq. 8. Under appropriate grouping of
tensors, the circuit of Fig. 2(b) can be mapped to a bi-
nary MERA of bond dimension χ = 4. This MERA can
then be split into two copies of the χ = 2 MERA from
Eq. 1 for the ground state of the quantum critical Ising
model, HIs. =

∑

r (−XrXr+1 − Zr), using known decou-
pling [30] and Jordan-Wigner [31] transformations, see
Ref.[23] Section D for details.

Exact MERA MERA
χ = 2 χ = 8

Energy -1.27323. . . -1.24212 -1.26774

(2.4% err.) (0.4% err.)

c 0.5 0.4957 0.5041

∆I 0 0 0

∆σ 0.125 0.1402 0.1233

∆ǫ 1 1 1

∆µ 0.125 0.1445 0.1291

∆ψ 0.5 0.5 0.5

∆ψ̄ 0.5 0.5 0.5

∆H 2 2 2

Cǫ,σ,σ 0.5 0.4584 0.4957

Cǫ,µ,µ -0.5 -0.4201 -0.5060

Cψ,µ,σ
e−iπ/4

√

2

1.1422e−iπ/4
√

2

1.0014e−iπ/4
√

2

Cψ̄,µ,σ
eiπ/4
√

2

1.1422eiπ/4
√

2

1.0014eiπ/4
√

2

Cǫ,ψ,ψ̄ i 1.234i 1.0243i

Cǫ,ψ̄,ψ -i -1.234i -1.0243i

TABLE I. Energy density, central charge c, scaling dimensions
∆i of primary fields (and also of the Hamiltonian ∆H), OPE
coefficients Cijk, of the χ = 2, 8 MERA constructed using
wavelets.

Results and discussion.— We now analyze the accu-
racy of the χ = 2 MERA from Eq. 1, constructed us-
ing D4 wavelets, and a χ = 8 MERA, constructed using
higher order wavelets (see Ref.[23], Section C), as ap-
proximate ground states of the quantum critical Ising
model. Note that, as with the χ = 2 MERA, the pa-
rameters defining the χ = 8 MERA are exactly speci-
fied from a closed-form solution. The ground energy and
critical data [13, 14] (including central charge c, scaling
dimensions ∆i and operator product expansion (OPE)
coefficients Cijk) are computed using standard MERA
techniques [6–8], and the results displayed in Table I.

The wavelet-derived results reproduce the critical data
of the Ising CFT, with the χ = 8 MERA providing signif-
icantly better accuracy. However, we find it remarkable
that the χ = 2 MERA of Eq. 1 does reasonably en-
code the CFT, despite the simplicity of the tensors it
is constructed from. A novel feature of these MERA is
that some of the scaling dimensions are reproduced ex-
actly (specifically those corresponding to primary fields

{I, ε, ψ, ψ̄}, as well as for several of their descendants),
which has never been achieved with variationally opti-
mized MERA, see Ref. [23] Section F for comparison.

As usual, each layer of the MERA can be understood
as implementing a step of entanglement renormalization
(ER), which can be used to generate a sequence of in-
creasingly coarse-grained Hamiltonians,

H
[0]
Is. → H

[1]
Is. → H

[2]
Is. → H

[3]
Is. → . . . , (13)

whereH
[z]
Is. is the effective Hamiltonian after z steps. This

RG flow is found to converge to a gapless fixed point H∗
Is.

that approximates the thermodynamic limit of the criti-
cal Ising model, see Ref.[23] Section E for details. This is
the first known example (analytic or numeric) of a crit-
ical Hamiltonian that is coarse-grained to a truly gap-
less fixed point using ER. In previous (variational) im-
plementations of ER, the gapless fixed point is approx-
imated for a finite number of RG steps (which can be
increased by using larger χ), before ultimately flowing to
a gapped fixed point [32]. This was understood to be an
inescapable consequence of finite bond dimension χ; that
truncation errors introduce relevant perturbations that
shift the RG flow off criticality. Here we have demon-
strated that the (previously observed) inability of ER
to fully reproduce a critical RG fixed point stems from a
limitation of the optimization strategies used, as opposed
to an inherent limitation of the finite-χ MERA.

That the RG flow from the wavelet-derived MERA
converges to a gapless fixed point follows from the con-
straints of Eq. 7, which impose that the wavelets, cor-
responding to modes truncated at each RG step, have
exactly vanishing component at the Fermi points, ±π/2.
This ensures that the Fermi surface remains intact un-
der coarse-graining, thus preventing a gap from open-
ing. More generally, this result may hint towards better
strategies for numerical optimization of MERA.

The wavelet methodology could be extended to allow
analytic construction of MERA (and potentially branch-
ing MERA [33]) for free fermions in higher dimensions,
and could also be extended to free bosonic MERA [34]
which may connect with previous use of wavelets to study
bosonic field theories [35]. We expect that the wavelet-
MERA relation will lead to other useful results, poten-
tially allowing a better characterization of errors and im-
proved implementations of MERA, and to be useful in
the ongoing efforts to understand MERA in the context
of AdS/CFT. Going the other way, this relation could
also lead to useful advances in the design of wavelet trans-
forms and in wavelet applications [27].
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