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We show that two-dimensional mechanical lattices can generically display topologically protected
bulk zero-energy phonon modes at isolated points in the Brillouin zone, analogs of massless fermion
modes of Weyl semimetals. We focus on deformed square lattices as the simplest Maxwell lattices,
characterized by equal numbers of constraints and degrees of freedom, with this property. The Weyl
points appear at the origin of the Brillouin zone along directions with vanishing sound speed and
move away to the zone edge (or return to the origin) where they annihilate. Our results suggest a
design strategy for topological metamaterials with bulk low-frequency acoustic modes and elastic
instabilities at a particular, tunable finite wavevector.

PACS numbers: 62.20.D-, 03.65.Vf

Topological properties of the energy operator and as-
sociated functions in wavevector (momentum) space can
determine important properties of physical systems [1–
3]. In quantum condensed matter systems, topological
invariants guarantee the existence and robustness of elec-
tronic states at free surfaces and domain walls in poly-
acetylene [4, 5], quantum Hall systems [6, 7] and topo-
logical insulators [8–13] whose bulk electronic spectra are
fully gapped (i.e. conduction and valence bands sepa-
rated by a gap at all wavenumbers). More recently topo-
logical phononic and photonic states have been identified
in suitably engineered classical materials as well, [14–33]
provided that the band structure of the corresponding
wave-like excitations has nontrivial topology.

A special class of topological mechanical states occurs
in Maxwell lattices, periodic structures in which the num-
ber of constraints equals the number of degrees of free-
dom in each unit cell [34]. In these mechanical frames,
zero-energy modes and states of self stress (SSS) are the
analogs of particles and holes in electronic topological
materials [16]. A zero energy (frequency) mode is the
linearization of a mechanism, a motion of the system in
which no elastic components are stretched [19, 20]. States
of self stress on the other hand guide the focusing of ap-
plied stress and can be exploited to selectively pattern
buckling or failure [18]. Such mechanical states can be
topologically protected in Maxwell lattices, such as the
distorted kagome lattices of Ref. 16, in which no zero
modes exist in the bulk phonon spectra (except those re-
quired by translational invariance at wavevector k = 0).
These lattices are the analog of a fully gapped electronic
material. They are characterized by a topological polar-
ization equal to a lattice vector RT (which can be zero)
that, along with a local polarization RL, determines the
number of zero modes localized at free surfaces, interior
domain walls separating different polarizations, and dis-

locations [17]. BecauseRT only changes upon closing the
bulk phonon gap, these modes are robust against disorder
or imperfections.

In this paper we demonstrate how to create topologi-
cally protected zero modes and states of self-stress that
extend throughout a sample. These enable the topolog-
ical design of bulk soft deformation and material failure
in a generic class of mechanical structures. As proto-
types, we study the distorted square lattices of masses
and springs shown in Fig. 1, and we show that they have
phases that are two-dimensional mechanical analogs of
Weyl semimetals [35–39]. In the latter materials, the
valence and conduction bands touch at isolated points
in the Brillouin zone (BZ), with the equivalent phonon

dispersion for the mechanical lattice shown in Fig. 1(a).
Points at which two or four bands touch are usually called
Weyl and Dirac points, respectively. These points, which
are essentially wavenumber vortices in 2D and hedgehogs
in 3D, are characterized by a winding or Chern number
[1, 3] and are topologically protected in that they can
disappear only if points of opposite sign meet and an-
nihilate or if symmetry-changing terms are introduced
into the Hamiltonian. Weyl semimetals exhibit lines of
surface states at the Fermi level that terminate at the
projection of the Weyl points onto the surface BZ. Weyl
points have also been predicted [40] and observed [41] in
photonic crystals and certain mechanical systems with
pinning constraints that gap out translations [23]. In
contrast, our examples consist of ordinary spring net-
works which suggests that the Weyl phenomenon is in
fact generic to Maxwell lattices of sufficient complexity.

Our distorted square lattices are defined by the com-
ponents of their two primitive lattice vectors and their
four basis vectors, for a twelve-dimensional full phase
space. We restrict our attention to a representative two-
dimensional space by varying only the components of
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FIG. 1. (a) Deformed square lattices can have sinusoidal bulk zero modes (red arrows) corresponding to Weyl points where
two bands touch in the phonon dispersion (inset). (b) The phase diagram of a deformed square lattice with the positions of
three sites fixed and the position of the remaining site given by the position (x2, y2). The inset shows the three fixed (yellow)
sites, one position of the varying (red) site and (white) sites in neighboring crystal cells. (c)-(f) Lattices (top) with phonon
dispersions (bottom) with dark areas indicating low-energy modes in the Brillouin Zone. In (b), white areas such as (c) lack
Weyl points and are marked with their a blue arrow indicating their topological polarization. Blue-shaded areas such as (d)
correspond to Weyl lattices. Open boundaries between white and blue regions indicate where Weyl points emerge at k = (0, 0)
while the pink dashed boundary indicate where they annihilate at k = (π, π). Lattices on the Special Lines, such as (e) lie
between topological polarizations and possess lines of zero modes along kx(y) = 0, while at the Special Point, (f), there are two
zero modes along each of kx(y) = 0.

a single basis vector, holding fixed (with dimensionless
lengths) lattice vectors ℓ1 = (1, 0), ℓ2 = (0, 1) and basis
vectors b1 = (0, 0),b3 = (.6, .1),b4 = (−.2, .4). The re-
sultant 2D phase diagram, shown in Fig. 1(b) exhibits a
rich phenomenology: (1) a special point (SP) at the ori-
gin with two orthogonal lines of zero modes in its spec-
trum, (2) special lines (SLs) along which the spectrum
exhibits a single line of zero modes, (3) finite regions
in which the spectrum is fully gapped and characterized
by topological polarizations RT , and (4) finite regions
whose spectrum contains Weyl points. Along paths in
(4), pairs of oppositely charged Weyl points correspond-
ing to zero frequency bulk modes appear at the origin of
the BZ along directions with quadratic, rather than lin-
ear, dispersions [discussed later in text] and move across
the zone edge, annihilating either at the origin or at
k = (π, π). The lattices on the low-dimensional special
point and special lines are critical lattices that require
fine tuning to reach. In contrast, the polarization (3)
and Weyl (4) regions occupy extended two-dimensional
areas in the phase diagram and do not require special
fine-tuning to reach. Because the Weyl modes have zero
energy at nonzero wavenumber, lattices in region (4) have
an instability that is missed by standard long-wavelength
elasticity. The existence of Weyl points has significant
consequences for response at the boundaries, leading to

a wavenumber-dependent count of boundary modes and
SSS.

One can continuously change the crystal basis so as to
pass from a lattice of one polarization to another either
by crossing a special line or by going through a region
of Weyl lattices. The latter process, which we now de-
velop in detail, brings pairs of zero modes into and out
of the bulk. In contrast, crossing through a critical lat-
tice brings a full line of edge modes into the bulk at a
particular point in parameter space.

Lattices of periodically repeated unit cells in d dimen-
sions with n sites (nodes) and nB bonds per unit cell un-
der periodic boundary conditions (PBCs) are character-
ized (see Supplementary Material and Refs. [34, 42]) by
an nB × dn compatibility matrix C(k) for each wavevec-
tor k in the BZ relating the dn-dimensional vector u(k) of
site displacements to the nB-dimensional vector e(k) of
bond extensions viaC(k)u(k) = e(k) and by the dn×nB

equilibrium matrix Q(k) = C†(k) relating forces f(k)
to bond tensions t(k) via Q(k)t(k) = f(k). The dy-
namical matrix (for systems with unit masses and spring
constants) is D = Q(k)C(k). Vectors u(k) in the null
space of C(k) do not stretch bonds and, therefore, cor-
respond to zero modes. Vectors t(k) in the null space of
Q(k) describe states with tensions but without net forces
and thus correspond to SSSs [43]. The number of zero
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modes n0(k) and SSSs ns(k) at each k are related by the
generalized Calladine-Maxwell index theorem [34, 43].

ν(k) ≡ n0(k)− ns(k) = dn− nB. (1)

In particular, for Maxwell lattices SSSs and zero modes
are created only in conjunction with one another, so that
the only SSSs in a gapped Maxwell lattice are those as-
sociated with the d translational modes. A Weyl point
by definition is a kw at which there is a zero mode, and
there is necessarily an SSS that goes with it under PBC.
The lines of zero modes occurring along the SLs in the
phase diagram also have associated lines of self-stress in
real space.
We now turn to zero modes on free surfaces. Cut-

ting a lattice under PBCs along a lattice plane indexed
by a reciprocal lattice vector G creates a finite-width
strip with two free surfaces aligned along the “parallel”
direction perpendicular to G. In this case, it is conve-
nient to express k ≡ (q, p) in terms of its components q
and p parallel and perpendicular to the cut, respectively.
The cut removes ∆nB bonds and ∆n sites for each unit
cell along its length or equivalently for each wavenumber
−π/a|| < q < π/a|| along the cut, where a|| is the length
of the surface cell on the cut. The index theorem relating
the total number of zero modes n0(q,G) (counting zero
bulk modes at different p) to the total number of SSSs
ns(q,G) at each q is

n0(q,G)− ns(q,G) = ∆nB − d∆n. (2)

Bulk modes in the spectrum are described by the same
C(k) as the uncut sample but with a different set of
quantized wavenumbers p parallel to G. If a bulk mode
is gapped in the periodic spectrum, it remains gapped in
the strip without an associated state of self-stress. Thus
if the bulk modes are gapped at a given q under PBCs,
their contribution to the left-hand side of Eq. (2) will be
zero, implying that only surface zero modes contribute
to Eq. (2). In addition, cutting the sample will not intro-
duce additional SSSs. The result is that Eq. (2) becomes
an equation for the total number of zero surface modes
on both surfaces, nST

0 (q,G). This is a global relation
that applies to every q in the surface BZ at which the
bulk spectrum is gapped.
As shown in Fig. 2(a), there are multiple ways to de-

fine the unit cell, corresponding to different gauges. The
natural choice in the bulk is a symmetrical cell, but it is
possible to obtain the number of zero modes on an edge
perpendicular to G directly by selecting a compatibility
matrix C(k,G) ≡ C(q, p,G) in which no bonds cross the
edge. As discussed in Ref. [34] and the Supplementary
Material, C(q, p,G)’s only p-dependent components are
proportionate to the complex number z = ei2πp/G, which
is invariant under p → p+G, and not to z−1 = e−i2πp/G.
Thus, detC(q, p,G) has no poles within the unit circle
and, by the Cauchy argument principle, its winding num-
ber around the circle |z| = 1 simply counts the number

of its zeros with |z| < 1. In contrast, det C̃(q, p,G) de-
pends on z−1 as well, and it has both poles and zeros
within the circle |z| = 1, which are counted with oppo-
site signs in the Cauchy integral. A zero of detC(q, p,G)
corresponds to a surface state with a complex inverse
penetration depth κ = − ln z with a positive real part in-
dicating decay away from the surface into the bulk. Thus
the number of surface zero modes at q is

nS
0 (q,G) =

1

2πi

∮

d ln detC(q, z,G)

dz

= −G ·RL/(2π) + ñS
0 (q,G), (3)

where it is understood that G is the inward normal to
the surface. RL = 2

∑

σ ∆rσ −
∑

β ∆rβ , where ∆rσ is
the lattice vector displacement of site σ and ∆rβ dis-
placement of bond β that converts the symmetric cell to
the surface cell, is the local polarization introduced in
Ref. 16. ñS

0 (q,G) is the Cauchy integral for the symmet-
ric unit cell. In Weyl-free regions of the phase diagram,
ñS
0 reduces to the expression, −G · RT /2π derived in

Ref. 16.
A Weyl point at kw ≡ (qw, pw) is characterized by an

integer winding number

nw =
1

2πi

∮

C

dl · ∇k ln detC, (4)

where C is a contour enclosing kw. As a result, both
nS
0 (q,G) and ñS

0 (q,G) change each time q passes through
the projected position of a Weyl point. Consider a lattice
with a positive (+1) Weyl point at k+

w and a negative
(−1) Weyl point at k−

w = −k+
w , and consider a surface

with an inner normal G as depicted in Fig. 2(b) for G =
(2π/a)(1, 1). The number of zero modes at q is calculated
from a contour from p = 0 to p = G at position q. Choose
q1± < q±w and q2± > q±w . Because the two paths enclose
a Weyl point, the zero-mode numbers on the two sides of
the Weyl point differ by the Weyl winding number:

nS
0 (q

2±,G)− nS
0 (q

1±,G) = nw = ±1. (5)

Thus if nS
0 (q < q+w ,G) = nS

1 , the number of zero modes
for q+w < q < q−w is nS

1 + 1, and the number for q >
q−w is again nS

1 . Figure 3 depicts the real part κ of
inverse penetration lengths of surface modes with and
without Weyl points. The lengths diverge at the Weyl
wavenumbers: the surface mode turns into a bulk mode
that traverses the sample.
Domain walls separating two semi-infinite lattices,

which we will refer to as the upper and lower lattices
as in Fig. 4, with different topological and Weyl charac-
teristics harbor topologically protected zero modes. As
in non-Weyl domain walls [16], the index describing the
zero mode/SSS count on the wall is governed by the mode
counts of the two domains,

νD(q,G) = ñS
0,L(q,G) + ñS

0,U (q,−G), (6)
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FIG. 2. (a) Different versions of the unit cell with four sites
1 − 4 labeled in italic script. The cell consisting of bonds,
labeled 1 − 8 in roman script and drawn in full black, is the
symmetric unit cell. A unit cell associated with a lower (an
upper) surface parallel to the x-axis is constructed by mov-
ing moving bond 8 through a2 (bond 6 through −a2) to the
dashed red (blue) line to yield RL = −a2 (RL = a2). (b)
depicts the standard square BZ with two Weyl points and the
BZ dual to a surface-compatible unit cell oriented at 45◦. The
component of k along the surface is q and that parallel to G is
p. It also shows two paths, one on each side of the projected
position q+w the “+” Weyl point at k+

w .
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FIG. 3. Real part of inverse penetration depths for fully
gapped lattices with no Weyl points [(a) with RT = (0, 0)
and (b) with RT = (0, 1)] and a lattice (c) and (d) with Weyl
points. In (b), a family of zero modes has been shifted from
one edge to the opposite relative to the unpolarized case (a),
while in (c) and (d) the bulk zero modes are part of families
split between two edges.

which now changes across the Weyl wavenumbers [4].
This result, derived and discussed in detail in the Supple-
mentary Material, describes walls with zero modes, self
stresses, or both (at different wavenumbers).

The long-wavelength elasticity of central-force lattices
is determined by the k = 0 SSSs [34]. In the lattices we
are considering, there are only two k = 0 SSSs, implying
that there are only two positive definite eigenvalues of
the Voigt elastic matrix [44]. There are three indepen-
dent strains εεε = (εxx, εyy, εxy), and the Voigt elastic ma-
trix must have three positive eigenvalues and associated
eigenvectors. Thus there must be one macroscopic elastic
distortion with strain εεεG that costs no energy. This is the
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FIG. 4. (a) TwoWeyl lattices with differently positioned Weyl
points connected at a domain wall D. (b) and (c): the inverse
penetration depths of the free surfaces of the upper and lower
lattices, respectively. The upper and lower lattices have Weyl
points with respective projections onto q of q±w1 and q±w2 with
|q+w2| > |q+w1|. The free lower (upper) lattice has two zero
modes penetrating downward ( upward) for q+w1 < q < q−w1

(q+w2 < q < q−w2) and one for |q| > |q+w1 | (|q| > |q+w2|). (d)
shows how the two sets of Weyl points divide the surface BZ
into five regions with 0, 1, 2, 1, and 0 zero modes in the
domain wall. The existence of bulk zero modes at k = 0
divides the central region with two zero modes per q into two
regions.

Guest mode [45] that is a feature of all periodic Maxwell
lattices except those, like the kagome lattice, with ex-
tra geometry-driven states of self stress [34]. The long-
wavelength determinant of the dynamical matrix equals
zero (see Supplementary Material and Ref. [34]) when

ky
kx

=
1

εGxx

[

εGxy ±
√

−detεεεG
]

, (7)

where detεεεG = εGxxε
G
yy − (εGxy)

2 is the determinant of the
Guest strain matrix. Thus, to linear order in k, there
are two lines in the BZ along which there is a zero mode
provided det(εεεG) < 0. Either these modes are raised to
finite energy by higher order terms in k not described by
the elastic limit, or a single Weyl mode appears along the
positive and negative parts of one of the lines. Note that
this implies a quadratic rather than a linear dispersion of
phonon modes near the origin and leads to inverse decay
lengths that are proportional to q2 rather than q at long
wavelengths as shown in Fig. 3.
In this work, we elucidated how Weyl modes gener-

ically arise in Maxwell frames and discussed their sig-
nificance using deformed square lattices as an illustra-
tion of the more general phenomenon. Indeed, lattices
with larger unit cells have additional phonon bands that
more easily touch, generically leading to Weyl points and
even multiple pairs thereof [see Supplementary Material].
Thus, our conclusions can be readily extended to other
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Maxwell lattices like origami metamaterials [21], ran-
dom spring networks and jammed sphere packings [46],
3D distorted pyrochlore [47] and stacked kagome lat-
tices [18] that fulfill the Maxwell condition. We also ex-
pect the presence of Weyl modes to impact the nonlinear
response (e.g. buckling) in the bulk as demonstrated for
edge modes [18, 19].
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