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Origami and kirigami have emerged as potential tools for the design of mechanical metamaterials
whose properties such as curvature, Poisson’s ratio, and existence of metastable states can be tuned
using purely geometric criteria. A major obstacle to exploiting this property is the scarcity of tools
to identify and program the flexibility of fold patterns. We exploit a recent connection between
spring networks and quantum topological states to design origami with localized folding motions at
boundaries and study them both experimentally and theoretically. These folding motions exist due
to an underlying topological invariant rather than a local imbalance between constraints and degrees
of freedom. We give a simple example of a quasi-1D folding pattern that realizes such topological
states. We also demonstrate how to generalize these topological design principles to 2D. A striking
consequence is that a domain wall between two topologically distinct, mechanically rigid structures
is deformable even when constraints locally match the degrees of freedom.

Recent interest in origami mechanisms has been
spurred by advances in fabrication and manufacturing
[1–3], as well as a realization that folded structures can
form the basis of mechanical metamaterials [4–8]. The
ability to identify kinematic mechanisms – allowable fold-
ing motions of a crease pattern – is critical to the use of
origami to design new deployable structures and mechan-
ical metamaterials. For example, the mechanism in the
celebrated Miura ori that allows it to furl and unfurl in
a single motion [9, 10] is also the primary determinant
of the fold pattern’s negative Poisson ratio [4, 5]. Identi-
fying these mechanisms becomes more challenging when
the number of apparent constraints matches the number
of degrees of freedom (DOF).

When there is an exact balance between DOF and
constraints in a periodic structure, the structure is
marginally rigid [11, 12]. In such a case, new mechanical
properties such as nonlinear response to small perturba-
tions emerge [13–16]. A recent realization is that the
flexibility of such solids may be influenced by nontrivial
topology in the phonon band structure [17, 18]. Here, we
show how to extend these topological ideas to origami
and kirigami. We show that periodically-folded sheets
may exhibit distinct mechanical “phases” characterized
by a topological invariant called the topological polariza-

tion, recently introduced by Kane and Lubensky [17] us-
ing a mapping of mechanically marginal structures to
topological insulators [19]. The importance of this invari-
ant has emerged in the study of the soft modes of spring
networks [18], and the nonlinear mechanics of linkages
[20] and buckling [21]. As in these examples, the phases
in our origami and kirigami structures exhibit localized
vibrational modes on certain boundaries, and transitions
from between topological phases are characterized by the
appearance of bulk modes that cost zero energy. These
are the hallmarks of topologically protected behavior in

classical mechanical systems [22–29]. Topology provides
a new knob to tune how materials and, as we show here,
origami and kirigami structures, respond to external per-
turbations.

We denote by origami, mechanical structures consist-
ing of rigid flat polygonal plates joined by hinges. We will
first discuss origami with no missing plates or “holes”,
and then generalize to kirigami, defined to be origami
where such holes are allowed. We will consider the me-
chanics of origami in the geometrical limit – folds will
cost zero energy and faces do not stretch or bend.

To demonstrate the power of our approach, we intro-
duce an example of a 1D strip of origami analogous to
the Su-Schrieffer-Heeger polyacetylene model [17, 30]. It
admits localized modes and stresses determined and pro-
tected by topology, which we realize and characterize in
experiments. Additionally we show how to generalize
this to 2D periodic origami sheets, where we have ob-
served a striking property that causes origami without
holes to have zero topological polarization. We give ex-
amples of hinged structures with holes (kirigami) that
do admit distinct polarizations and thus can be used as
building blocks for metasheets with programmable local
flexibility.

Quasi-1D origami strip.— We start with a simple
quasi-1D origami structure. Consider an origami strip of
zig-zagging rigid quadrilateral plates, depicted in Fig. 1,
consisting of a periodically-repeating unit cell of two four-
fold vertices. Each vertex in a cell (labeled by n = 1, 2)
has four creases (Fig. 1(a)), and one DOF [31] that we
track with the dihedral angles of the bolded crease, fn(j),
where j indexes the unit cell (Fig. 1(b)). Each adjacent
pair of dihedral angles is coupled by the kinematics of the
intervening vertex. As each vertex contributes a DOF
and a constraint, this origami structure has marginal
rigidity.
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FIG. 1: A quasi-1D origami strip. (a) A unit cell of the fold
pattern corresponding to the origami mechanism with planar
angles labeled. Red (blue) creases are mountain (valley) folds,
respectively. (b) A 3D depiction of a part of the strip with
folding angles fi(n) labeled. (c) The phase diagram where
α = π/3, β ≡ β1 = β2 and γ ≡ γ1 = γ2. The colors indicate
the phase (blue for right-localized, red for left-localized); the
contours and intensity of color follow the inverse decay length
1/l (see legend). Configurations where folds at a vertex be-
come collinear lie on γ = β, and the green points along that
line were constructed in experiment (along this line, (γ, β)
and (−γ,−β) are related by a rotation in 3D).

We analyze the mechanical response of the origami
strip by determining its configurations analytically as
functions of the fold pattern angles β1,β2, γ1 and γ2 (de-
fined in Fig. 1(a)). We define a generalized displacement
u(j) = cos f2(j) + 1. The function u(j) encodes the di-
hedral angle f2 of the right-most fold of unit cell j, and
satisfies

u(j + 1) = κ(α, β1, β2, γ1, γ2)u(j), (1)

where

κ =

[

sin(α− β1) sin(α− γ1)

sin(α+ β1) sin(α+ γ1)

] [

sin(α− β2) sin(α− γ2)

sin(α+ β2) sin(α+ γ2)

]

.

(2)
The derivation is an application of the spherical law of
cosines and is given in the SI. The fact that u(j) de-
termines u(j + 1) implies that the strip has one degree
of freedom, globally. Eq. (1) is solved by an exponen-
tial u(j) = u(0) exp[j ln(κ)] with deformation localized

to one side or the other, following the sign of the inverse
decay length l−1 = lnκ.

The mechanical “phase diagram” in Fig. 1(c) shows the
values of l−1 for patterns with γ1 = γ2 ≡ γ, β1 = β2 ≡ β.
There are two “phases” distinguished by the sign of lnκ,
which is determined here by the sign of γ+β, a quantity
not obviously related to any symmetry-breaking. When
γ + β > (<)0, κ < (>)1, and by Eq. (1), the mechani-
cal response is localized to the left (right) of the origami
strip. A special role is played by fold patterns with κ = 1,
where the decay length diverges and u(j) neither grows
nor shrinks (denoted by the dashed line). This is pre-
cisely the condition for which a global kinematic mech-
anism exists and the fold pattern is deployable [32]. As
an example, when γ = β = 0, the strip realizes a row
of the Miura ori fold pattern, which has a single collapse
motion. More generically, however, as long as lnκ never
changes sign, the deformation in a strip, u(j), is localized
even if the values of α, βj , γj vary due to disorder or im-
perfections, i.e. as long as the material remains within the
same phase. The existence of phases of robust, boundary-
localized zero-energy deformations separated by critical
configurations with bulk zero modes suggests that the
origami strip has topologically protected properties.

To make the topology explicit, we calculate a topo-
logical invariant of the above phases. Unlike in periodic
spring networks with marginal rigidity [17, 33, 34], a lin-
ear analysis is inadequate to capture the topology of the
origami strip. Coplanar hinges in the flat state are re-
dundant constraints, and this results in extra zero modes
at linear order which do not extend to higher order. In
the SI, we derive a rigidity matrix capturing the second-

order deformations of this structure and show that it has
the same pattern of entries as the Hamiltonian of the Su-
Schrieffer-Heeger chain of Refs. 17, 30. Therefore, phases
of the origami strip are characterized by their topological
polarization ~PT [17, 18], defined as a winding number of
the determinant of the rigidity matrix [38]. Indeed, the
sign of lnκ is precisely correlated with the topological
polarization, and thus the fact that different edges are
soft or stiff in different phases is a manifestation of the
bulk-boundary correspondence [19] in this system. While
topological modes in 1D linkages have been found to lead
to propagating domain walls [20, 35], this is not possible
for our 1D strip. In Eq. (2), κ depends only on the fold
pattern angles α, βj , γj, not the dihedral angles fj – this
means that the topological polarization of the unit cell
cannot change via the zero-energy deformations, which
would be necessary for propagation.

To test the consequences of Eq. (1) away from the ideal
limit, in a structure where faces can bend and hinges can
twist, a mylar sheet (200 µm thick) is perforated by a
laser cutter into the desired crease pattern, rendering it
foldable along lines of perforations. We strengthen the
facets by sandwiching the mylar sheet between pairs of
1 mm thick, plastic plates made of polylactic acid (PLA)
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on a 3D printer. To mount the plastic plates onto the
mylar sheet, we use a pushed-in clip design: one facet
has clips and the corresponding facet has holes. Equiv-
alent holes are cut on the mylar sheet so that the clips
can be pushed through to meet the holes on the plate on
the other side of the mylar. An example of the assembled
origami structure is shown in Fig. 2(a). Here, we fixed
the angle α = π/3 and varied γ ≡ β1 = γ1 = β2 = γ2
to explore the localization of the deformation within one
phase (with κ < 1) [39]. A video camera captured the de-
formation of the strip from above as it was symmetrically
compressed. The position of each vertex was obtained via
image analysis, and fit with a 3D model to reconstruct
the complete morphology of the origami strip, as shown
in Fig. 2(b). Finally, the folding angles along the interior
creases were extracted from the 3D shape and were used
to compute the generalized strain u. Fig. 2(c) shows the
strain as a function of distance along the strip for samples
with different values of the pattern parameter γ. Observe
that there is a “soft” edge (cell index 0), where the de-
formation is high, and on the other end a “stiff” edge,
with low deformation.

As shown by a semi-log fit (dashed lines in Fig. 2(c)),
the strains decay exponentially at small distances from
the soft edge. For small γ, the folding angles level off
to a roughly constant value at larger distances, which
violates Eq. (1). The constant folding angle background
corresponds to the activation of a mode with uniform de-
formation. This mode is easy to excite as it is the zero
energy mode at γ = 0 and thus remains very low en-
ergy for small γ. A deviation from the ideal geometrical
limit is possible due to the finite flexibility of the facets
and the finite crease thicknesses. Despite the non-ideality
of the experimental origami strip, the decay lengths ex-
tracted from the fit are in good agreement with 1/l = ln κ
(Fig. 2(d)), confirming the robustness of our topological
design principle.

Two-dimensional origami.— Having established that
marginally rigid 1D periodic origami can exhibit topolog-
ical phases, we now ask whether marginality also leads to
similar phases in 2D origami. We first characterize the
class of marginally rigid 2D periodic origami and show
that they must have a triangulated crease pattern. To
avoid trigonometric complexity inherent to a folding an-
gle representation, we model the kinematics of triangu-
lated origami as a central-force spring network with ver-
tices as joints and hinges as springs. Triangles in such a
network automatically enforce the no-bending constraint
on the facets. Arbitrary origami can be modeled with
spring networks, but nontriangular faces require addi-
tional internal springs to remain rigid.

In this framework, each joint has 3 degrees of freedom
and each spring adds one constraint, so marginal struc-
tures satisfy E = 3V where E is the number of bonds
and V is the number of joints. In a triangulated surface
without a boundary, each of the F faces is a triangle,
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FIG. 2: (a) Localized deformations in an experimental re-
alization of the origami strip (α = π/3, γ1 = γ2 = β1 =
β2 = 0.062). (b) 3D reconstruction of the configuration of
the strip from a flat image (γ = 0.124). (c) Normalized gen-
eralized strain u/u0 as a function of distance from the de-
formable boundary (measured in number of unit cells) from
experiments (shaded curves) with fits to an exponential de-
cay (dashed lines). Each curve shows the average of data
from 6 − 30 experimental images and has a width equal to
the standard error. Folding angles f2(1) (related to u0 via
u0 = 1 + cos f2(1)) at cell 1 varied from 1.06 to 1.45. (d)
Inverse decay lengths (1/l) versus γ, where data points are
averages over the fitting coefficients of all images for each γ
and error bars show 95% confidence bounds. The analytical
result for l−1 = ln κ (Eq. 2) is plotted as a solid red line. The
deviations for small γ arise from a “uniform bending mode”
(see text).

so 3F = 2E. The Euler characteristic χ is defined as
χ = V − E + F ; thus we obtain E = 3(V − χ).

Periodic origami structures in 2D have the topology of
the torus and thus χ = 0, which shows that triangula-

tions are marginally rigid. While achieving marginal-
ity in granular packings and glassy networks requires
some fine-tuning in pressure or coordination, the anal-
ogous origami triangulations arise naturally. Any non-
triangular plate in an origami pattern can be triangulated
by adding diagonals, and the bending of non-triangular
plates in real origami can be modeled as the addition of
new creases [4, 6].

One might now expect a variety of topological phases
upon changing the angles and lengths of a triangulated
crease pattern, by analogy with the 1D strip. Surpris-
ingly, our calculations indicate otherwise. As discussed
above, an analysis of the rigidity of flat origami must
go beyond linear order. To bypass this complication, we
consider periodic triangulated origami where we break
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FIG. 3: Topologically protected zero mode (red) in a kirigami

heterostructure (left green with topological polarization ~PT =

(1, 0) / right blue with ~PT = (0, 0)). Numerically the mode
depicted has energy nearly indistinguishable from the trans-
lation modes. This is a close-up of a larger periodic 50 × 5
system, divided into two 25 × 5 domains (two copies in the
shorter direction are shown). The magnifying glass insets
show the fine structure of four unit cells of each type, and
between them is a schematic showing how the quadrilateral
plates, strips of triangles, and quadrilateral holes are joined
by hinges. The schematic shows four unit cells, with the lower
left cell highlighted in green.

the flat-state degeneracy by introducing small vertical
displacements to the vertices. The linear rigidity and
topological properties of such a structure can then be
expressed in terms of the (Fourier-transformed) rigidity
matrix R for its associated spring network [17, 18]. How-
ever, for all triangulated periodic fold patterns we have
considered, the function detR(q), a priori a complex-
valued function, is in fact real-valued for all q in the
Brillouin zone [40]! Though a proof of this statement for
all triangulated origami eludes us, extensive numerical
tests on a large number of distinct fold patterns bear out
this conjecture. We give details and partial results in the
SI.

A consequence of the “reality” property is that the
winding numbers of Arg detR(q) along any closed
curves in the Brillouin zone must be zero (when defined),

and hence the topological polarization ~PT must vanish.
Localized boundary modes for such origami still exist,
but must be isotropically distributed. Even if the hinges
in a unit cell break left-right symmetry, the number of
boundary modes per unit cell on each edge of a finite
patch is left-right and up-down symmetric. If in fact all
triangulated periodic origami structures have this prop-

erty, the only way to get an imbalance in the number
of zero modes at the boundary of origami is by locally
adding or removing constraints. This behavior contrasts
with that of the 1D strip of origami studied above as well
as 3D periodic networks and marginal spring networks
confined to 2D.
Topological kirigami.— Thus the question remains: do

there even exist 2D periodic hinged structures with a
nonzero topological polarization? The answer is yes, but
we must go beyond origami to kirigami, folded structures
with holes. There is a simple way to generate marginal
kirigami from triangulated origami. Cutting out an adja-
cent pair of triangles removes one bond from the associ-
ated spring network, eliminating a constraint. Likewise,
merging two triangles into a rigid quadrilateral plate adds
a constraint. We therefore modify a triangular lattice by
cutting and merging twice, resulting in a structure with
two quadrilateral plates and two quadrilateral holes per
unit cell (top center of Fig. 3). Now detR(q) is complex-
valued, and by randomly perturbing a flat realization,
we find the “green” (left) and “blue” (right) structures

depicted in Fig. 3, which have ~PT = (1, 0) and (0, 0), re-
spectively (see SI for more details). With free boundary
conditions, the boundary soft modes in the green kirigami
are polarized to the +x edge (analogous to the 1D strip
and in contrast to the blue kirigami and all triangulated
origami structures we tested).
Finding the green kirigami answers the question above

positively, and we leave a determination of the possible
phases that can occur in the modified triangular lattice to
future work. A full characterization will likely be difficult
due to the high dimensionality of the realization space
(c.f. Ref. 36 which shows the complexity of the phase di-
agram in a simpler mechanical system). We thus switch
gears and present an example of localized modes designed
into a kirigami “heterostructure” to illustrate the power
of our techniques. In Fig. 3, we show a kirigami struc-
ture that exhibits zero modes localized at a domain wall
(one per unit cell) between the two kirigami structures
described above. The zero modes render the heterostruc-
ture flexible in the vicinity of the domain wall (the mode
depicted leads to out-of-plane wrinkling), while keeping
it rigid further away. By contrast, a domain wall be-
tween distinct patterns with equal polarization has no
such localized modes (see SI). In general, domain walls
between structures with different polarizations create ei-
ther “soft” lines along which the system easily deforms, or
“stressed” lines which first bear the loads under applied
strains [21]. Similar effects may arise at point defects in
otherwise uniform polarized structures [37].
Outlook.— We have demonstrated that origami and

kirigami structures are characterized by a topological po-
larization that classifies the ways that a marginally rigid
fold pattern can be floppy close to its boundaries. Our
results give strong constraints on the types of boundary
modes that can be created in origami and will guide the
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design of fold patterns that achieve a targeted mechan-
ical response. In the design space of geometric realiza-
tions, two structures with different polarizations must
be separated by globally flexible, i.e. deployable, realiza-
tions. Thus not only can structures with distinct phases
be combined in real space to form domain walls with
useful functionality, but also they can be used to find
deployable patterns in design space. These realization
spaces are high dimensional in general, so the problem
of determining simple rules to create a given polarization
remains open.
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