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We compute the zero-temperature dynamical structure factor of one-dimensional liquid 4He by
means of state-of-the-art Quantum Monte Carlo and analytic continuation techniques. By increas-
ing the density, the dynamical structure factor reveals a transition from a highly compressible
critical liquid to a quasi-solid regime. In the low-energy limit, the dynamical structure factor can
be described by the quantum hydrodynamic Luttinger liquid theory, with a Luttinger parameter
spanning all possible values by increasing the density. At higher energies, our approach provides
quantitative results beyond the Luttinger liquid theory. In particular, as the density increases, the
interplay between dimensionality and interaction makes the dynamical structure factor manifest a
pseudo particle-hole continuum typical of fermionic systems. At the low-energy boundary of such
region and moderate densities, we find consistency, within statistical uncertainties, with predictions
of a power-law structure by the recently-developed non-linear Luttinger liquid theory. In the quasi-
solid regime we observe a novel behavior at intermediate momenta, which can be described by new
analytical relations that we derive for the hard-rods model.

One-dimensional (1D) quantum systems exhibit some
of the most diverse and fascinating phenomena of con-
densed matter Physics [1–3]. Among the most spectac-
ular signatures of the interplay between quantum fluc-
tuations, interaction and reduced dimensionality, are the
breakdown of ordered phases in presence of short-range
interactions [4], and the loosened distinction between
Bose and Fermi behavior [5]. The study of quasi-1D
quantum systems is a very active research field, aroused
by the experimental investigation of electronic transport
properties [6–10], by the fabrication of long 1D arrays
of Josephson junctions [11], and recently corroborated
by the availability of ultracold atomic gases in highly
anisotropic traps and optical lattices [2, 12–14], as well
as by experiments on confined He atoms [15–19].

The low-energy properties of a wide class of Bose
and Fermi 1D quantum systems [1, 20] are notoriously
captured by the phenomenological Tomonaga-Luttinger
liquid (TLL) theory [21–23], characterized by collective
phonon-like excitations. This theory introduces two con-
jugate Bose fields φ(x), θ(x) describing, respectively,
the density and phase fluctuations of the field operator
ψ(x) =

√

ρ+ ∂xφ(x) e
iθ(x), where ρ is the average den-

sity. Those fields are described by the exactly-solvable
low-energy effective Hamiltonian:

HLL =
~

2π

∫

dx

(

cKL∂xθ(x)
2 +

c

KL

∂xφ(x)
2

)

. (1)

Although in general the TLL parameter KL and the
sound velocity c are independent quantities (notably in
lattice models), for Galilean-invariant systems c = vF

KL

[23], vF = ~kF

m
being the Fermi velocity and kF = πρ

the Fermi wavevector of a 1D ideal Fermi gas (IFG),
and KL is thus related to the compressibility κS by

mK2
L = ~

2π2ρ3κS . Such collective excitations are re-
vealed by the low-momentum and low-energy behavior
of the dynamical structure factor:

S(q, ω) =

∫

dt
eiωt

2πN
〈e itH

~ ρqe
−

itH

~ ρ−q〉 , (2)

where ρq =
∑N

i=1 e
iqxi is the Fourier transform of the

density operator, N the number of particles, H the
Hamiltonian and xi the position of the i-th particle [24].
A complete characterization of density fluctuations re-
quires to compute (2) also beyond the limits of applica-
bility of TLL theory. A deep insight in the character-
ization of (2) at higher frequencies is provided by the
phenomenological nonlinear TLL theory [3, 25]; for inte-
grable models, quantitative results are also provided by
nonperturbative numeric calculations [13, 14, 26–28]. For
physically-relevant non-integrable systems, on the other
hand, the study of (2) requires more general approaches.
In this Letter, we probe the excitations of 1D liq-

uid 4He by evaluating its complete zero-temperature dy-
namical structure factor with fully ab-initio methods.
When strictly confined in 1D, 4He provides a spectac-
ular condensed-matter realization of a TLL, having the
unique feature of spanning all possible values of KL by
only varying the density. The interest in this system
emerges also in connection with experimental realizations
and theoretical characterizations of quasi-1D He systems
confined inside nanopores [17, 29–31] or moving inside
dislocation lines in crystalline He samples [18, 19, 32]. A
realistic microscopic description of the system is provided
by the Hamiltonian:

H = − ~
2

2m

N
∑

i=1

∂2

∂x2i
+

N
∑

i<j=1

V (xi − xj) , (3)
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Figure 1. (color online) TLL parameter KL, from the com-
pressibility κ−1

S = ρ∂ρ

(

ρ2∂ρE(ρ)
)

(blue circles) and the low-q
behavior of S(q) (orange triangles). Superimposed lines are
described in the text. Inset: equation of state E(ρ).

V (x) being the well-established Aziz potential [33]. We
access S(q, ω) by performing an inverse Laplace trans-
form of the imaginary-time correlation function:

F (q, τ) =
1

N
〈e τH

~ ρqe
−

τH

~ ρ−q〉 =
∫ ∞

0

dωe−τωS(q, ω).

(4)
We compute F (q, τ) using the Path Integral Ground
State (PIGS) method [34, 35], which provides unbiased
[36] estimates of ground-state properties and imaginary-
time correlations by statistically sampling the wavefunc-
tion Ψτ = e−τHΨT , where ΨT is a trial state [37, 38],
non-orthogonal to the ground state of H . At sufficiently
large τ , the expectation values over Ψτ are compatible
with ground-state averages. We simulate up to N = 160
particles using periodic boundary conditions and find
that our results are representative of the thermodynamic
limit already for N = 40 particles within statistical un-
certainty (see Supplemental Material [39]). Inverting the
Laplace transform in Eq. (4) is notoriously an ill-posed
inverse problem, meaning that many possible S(q, ω) are
compatible with the imaginary-time data. However, a
number of inversion strategies have provided reliable re-
sults for physically relevant systems [40–43]. In this Let-
ter, we use the state-of-the-art Genetic Inversion via Fal-
sification of Theories (GIFT) algorithm [43–50].
We study the Galilean-invariant liquid phase which is

notoriously stable above the density ρsp = 0.026(2) Å−1,
where it undergoes a spinodal decomposition [51–53],
namely the formation of liquid droplets. In Fig. 1, we
compute the TLL parameter KL of the system as a func-
tion of ρ > ρsp from both the compressibility and the
sound velocity, inferred from the low-momentum behav-
ior of the static structure factor S(q) = F (q, 0) ≃ KL

q
2kF

.
The good agreement between the two estimates over the
whole density range confirms their accuracy, and the in-
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Figure 2. (color online) Static structure factor S(q) at ρ =
0.22, 0.30 Å−1 (red circles, green triangles). Inset: Scaling of
S(2kF ) with N at the same densities (dashed lines: fit to a
power-law). Values of KL from c and the scaling of S(2kF )
are reported.

ternal consistency of our approach. Close to the spin-
odal decomposition, the sound velocity provides a more
precise estimate of KL [54]. As the density increases,
KL monotonically decreases from ∞ to 0, manifesting
three fundamental regimes. At density ρ <∼ 0.06 Å−1

the system is in the spinodal critical regime and we ob-
serve KL ∝ (ρ − ρsp)

−ζ with ζ ≃ 0.5. This is equivalent
to a dependence c ∝ (P − Psp)

ν of sound velocity with
the pressure difference P − Psp, with Psp the pressure at
the spinodal point and ν = ζ/(2ζ + 1) ≃ 0.25, which is
interestingly consistent with the critical value in three-
dimensional helium [55–58]. At density ρ >∼ 0.30 Å−1

we observe instead a good agreement with the hard-rods
(HR) model [59], defined by V (x) = ∞ for |x| < a and
0 otherwise. In Fig. 1 we take a = 2.139Å, which is
the scattering length of the repulsive part of the 4He
potential as in [60]. The HR model spans all values of
KL = (1 − ρa)2 < 1 as a function of the density. At the
intermediate density ρ ≃ 0.150 Å−1 4He attains KL = 1,
which is the TLL parameter of the Tonks-Girardeau gas
of impenetrable point-like Bosons [5] and of the 1D IFG.

The diverse behavior of 4He is a peculiar consequence
of the interplay between the hard-core repulsion and the
Van der Waals attraction in the interaction potential, and
the mass of the atoms. It has been recently recognized
that the TLL parameter of 3He features a similar high-
density behavior [61]; the low-density behavior, however,
is remarkably different as the smaller mass of 3He pre-
vents a spinodal decomposition, maintaining KL and the
compressibility below a finite value.

In view of the universality of TLL theory, knowledge
of KL sheds light on the low-momentum and low-energy
structure of S(q, ω). TLL theory also predicts [62–64] a

power-law singularity S(q = 2kF j, ω) ∼ ω2(j2KL−1) for
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Figure 3. (color online) Color plot of S(q, ω) at several densities and corresponding KL. Feynman approximation ωF (q) (gray
dash-dotted lines) and the free particle dispersion ~q2/2m (green dotted lines) are drawn for comparison. Panels (a-d) show also
the bounds ω±(q) of the particle-hole band (blue dashed line), while panels (e-f) show the bounds ω±

∗ (q) of the HR elementary
excitations (violet solid line). Panel (f) shows the low-energy threshold ωth(q) of HR with KL = 0.125 (double-dashed line),
and momentum Q1 (red arrow). Values of S(q, ω) beyond scale are plot in black.

ω → 0 and integer (j ∈ N) multiples of 2kF . Such singu-
larity is strictly related to the emergence of quasi-Bragg
peaks in the static structure factor, featuring a sub-linear
growth S(2kF j) ∝ N1−2j2KL [59] with the number of
particles. The height of the j-th peak diverges, in the
thermodynamic limit, provided that 2j2KL < 1. In
Fig. 2 we observe the emergence of quasi-Bragg peaks in
S(2kF ) at densities ρ > 0.196(5) Å−1, where KL < 1/2.
This is naturally expected since the small compressibility
sets up a diagonal quasi-long range order, while crystal-
lization is prohibited by the dimensionality and by the
range of the interaction [59]. The scaling of S(2kF ) with
N , reported in the inset of Fig. 2, provides an alternative
estimate of KL, in agreement with the results in Fig. 1.

The rich physical behavior suggested by the TLL pa-
rameter is notably unveiled by the dynamical structure
factor, that our approach characterizes over the entire
momentum-energy plane. Fig. 3 shows S(q, ω) as a func-
tion of momentum and frequency, in Fermi units 2kF
and EF /~ = ~k2F /2m respectively, at several represen-
tative densities. We show also Feynman’s approxima-
tion for the excitation spectrum ωF (q) = ~q2/2mS(q),
which postulates a single mode saturating the f-sum rule
~q2/2m =

∫

dωS(q, ω)ω. Departures from the Feynman
spectrum indicate a broadening or the presence of mul-
tiple modes [65].

As expected, for small q and ω, S(q, ω) is always
peaked around the phonon dispersion relation ω = cq.

On the other hand, the high-energy scenario is strik-
ingly different and strongly dependent on the density.
At KL ≃ 6.3 (Fig. 3a) the spectral weight is very close
to the free particle dispersion, consistently with similar
predictions for 3D helium at negative pressures [55–58].
Such behavior is common to the Lieb-Liniger contact in-
teraction model at large KL [26, 66, 67], although in
the case of 4He the physical origin of such a behavior
lies in the spinodal critical point. At large momentum
(q >∼ kF ) and energy we observe a broadening of S(q, ω),
that makes more and more pronounced as KL decreases
(Fig. 3b,c). As in the Lieb-Liniger model [26], the spec-
tral weight of S(q, ω) partially fills the particle-hole band
of the 1D IFG, enclosed between the dispersion relations
ω±(q) =

∣

∣vF q ± ~q2/2m
∣

∣. In both cases, this reveals a
tendency for fermionization [5]: the repulsive interaction
between 1D bosons mimics the Pauli exclusion principle,
and makes S(q, ω) manifest the particle-hole continuum
typical of spinless free fermions. At KL ≃ 2.1 (Fig. 3c)
the spectral weight of 4He starts to concentrate again,
emerging as a phonon and then bending downwards to
approach ω−(q). Such peculiar behavior is reminiscent of
the deflection of the Bogoliubov mode in 3D systems of
hard spheres [50, 68], with the notable difference that in
1D the spectral weight at q ≃ 2kF j is non-zero up to very
low frequency. At KL ≃ 1 (Fig. 3d) the incipient concen-
tration of the spectral weight makes strikingly manifest
and takes place around a low-energy excitation, which
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is close to ω−(q) for q < 2kF and approaches the free
particle dispersion relation for higher momentum. How-
ever, S(2kF , ω) is almost flat at low frequency ω <∼ EF /~,
within our resolution (see Supplemental Material [39]),
analogously to the Tonks-Girardeau and IFG models.
Above the low-energy excitation a lower-intensity sec-
ondary structure overhangs; for KL < 1 (Fig. 3e,f) it
evolves into a well-defined high-energy structure attain-
ing a non-zero local minimum at q = 2kF , in corre-
spondence of the free-particle energy. Although a precise
characterization of this structure requires further inves-
tigation, it is reminiscent of a 3D rotonic behavior or
of multi-phonons [50, 68–70]. For KL ≃ 0.39 (Fig. 3e)
S(q, ω) is mostly distributed in a region with bound-
aries ω±

∗ (q), which are modified with respect to ω±(q)
as an effect of interaction, and the spectral weight con-
centrates close to the lower branch ω−

∗ (q). We notice
that ω±

∗ (q) = ω±(q)/KL (solid lines in Fig. 3e,f). A sim-
ilar behavior can be discerned [71] in the Super Tonks-
Girardeau gas [72, 73], a gaseous excited state of the at-
tractive Lieb-Liniger model. This behavior can be quan-
titatively explained: in the high-density regime the main
interaction effect is volume exclusion, as in the HR model.
The solution of such model via the Bethe Ansatz tech-
nique [74–76] shows that the eigenfunctions of the HR
Hamiltonian can be mapped onto those of an IFG with
increased density ρ/(1−ρa), thus yielding a scaling factor
(1 − ρa)−2 = K−1

L in the boundaries of the particle-hole
band.
The distribution of spectral weight changes dramati-

cally for KL ≃ 0.125 (Fig. 3f) for 2kF < q < 4kF , where
the low-energy excitation rapidly broadens and flattens
at q ≃ 3.2kF , and concentrates again at a lower energy
around q ≃ 4kF . A quantitative explanation of this effect
can be given in the light of the recently-developed non-
linear TLL theory [3], again modeling 4He atoms with
HR. Nonlinear TLL theory assumes the existence of a
low-energy threshold ωth(q), below which no excitations
are present. Interpreting an excitation with frequency
ω >∼ ωth(q) as the creation of a mobile impurity in an
otherwise usual TLL, nonlinear TLL theory shows that
S(q, ω) features a power-law singularity:

S(q, ω) ∝ Θ(ω − ωth(q)) |ω − ωth(q)|−λ(q) , (5)

where λ(q) is a function of KL and ωth(q) [25] and
Θ(ω) is the Heaviside step function. The expansion
ωth(q) ≈ cq − ~q2/2m∗ of the low-energy threshold
around q = 0 defines the effective mass m∗, which
sets the energy scale where modifications from TLL the-
ory take place [25]. The effective mass is a function
1/m∗ = c ∂µ

(

c
√
KL

)

/KL of KL and the chemical po-
tential µ [25, 77]. For the HR model we indeed de-
rive m/m∗ = 1/KL, indicating that ωth(q) ≈ ω−

∗ (q)
for small momentum. This is again confirmed over the
whole range 0 ≤ q ≤ 2kF by the analytical solution of
the HR model [76]. Away from this basic region, the
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Figure 4. (color online) Analytical non-linear TLL exponent
Eq. (6) for HR with KL = 0.125 (solid line) and PIGS+GIFT

(circles) fitted exponents of 4He at density ρ = 0.3Å
−1

.

low-energy threshold repeats periodically [3, 63, 78] as
shown in Fig. 3f: therefore ωth(q) = ω−

∗ (q − 2nkF ) with
2nkF < q < 2(n+ 1)kF and n integer.
For the HR model, given the analytic expressions of

KL and ωth(q), we extract the exponents following [25]:

λ(q) = −2 (q̃ − n) (q̃ − n− 1) , q̃ ≡ qa/2π . (6)

In Fig. 4 we show λ(q) for a HR system with the same
KL as in Fig. 3f, comparing it to numerically extracted
exponents as described below. λ(q) is a piecewise contin-
uous function of q, with jump singularities at q = 2nkF .
For 0 ≤ q < 2kF , λ(q) > 0 and S(q, ω) diverges close to
ωth(q). After q = 2kF , λ(q) changes sign and thus S(q, ω)
vanishes close to ωth(q). In fact, for 2kF < q <∼ 3.2kF , the
spectral weight concentrates much above ωth(q), around
ω−
∗ (q), a feature which is even beyond nonlinear TLL the-

ory. Eq. (6) predicts a flat S(q, ω) at the special wavevec-
tors Qn = 2πn/a, consistently with a previous result [59]
based on exact properties of the HR model. We indeed
observe almost flat S(q, ω) at Q1 = 3.24 kF ≃ 2π/a (red
arrow in Fig. 3f). Beyond Q1 the divergence reappears,
since λ(q) < 0.
To quantitatively verify prediction (6), for some mo-

menta we have performed much more refined reconstruc-

tions at ρ = 0.3Å
−1

, imposing S(q, ω) = 0 [79] below
the exact ωth(q) for the HR model, and fitting the ob-
tained spectrum to a power law (see Supplemental Mate-
rial [39]). The obtained exponents are indicated in Fig. 4:
this procedure does not disprove the power-law model
(5) in a range of frequencies up to ∼ ωth(q) + EF /~, de-
pending on momentum [80], and yields exponents λ(q)
which are consistent with the nonlinear TLL prediction
(6) within statistical uncertainty. This result is quite
remarkable, since no prior knowledge about S(q, ω) has
been enforced in the analytic continuations, except for
the f-sum rule and the exact threshold for HR [81].
We have thus provided a robust description of the sys-

tem in the experimentally-relevant high-density regime,
based on the HR model, which almost fully characterizes
the spectrum at low and intermediate energies. The novel
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structure predicted around momenta that are multiples
of 2π/a is relevant, and would be very interesting to ex-
perimentally observe, for all quantum excluded-volume
systems, such as liquid He inside nanopores, Rydberg
gases [82, 83] and Super-Tonks-Girardeau gases.
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A. Stunault, and H. M. Rønnow, Fractional spinon ex-
citations in the quantum Heisenberg antiferromagnetic
chain, Nat. Phys. 9, 435–441 (2013).

[28] B. Lake, D. A. Tennant, J.-S. Caux, T. Barthel,
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