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We present the first experimental characterization of the azimuthal Wigner distribution of a
photon. Our protocol fully characterizes the transverse structure of a photon in conjugate bases of
orbital angular momentum (OAM) and azimuthal angle (ANG). We provide a test of our protocol by
characterizing pure superpositions and incoherent mixtures of OAM modes in a seven-dimensional
space. The time required for performing measurements in our scheme scales only linearly with the
dimension size of the state under investigation. This time scaling makes our technique suitable for
quantum information applications involving a large number of OAM states.

Ever since its introduction in 1932 [1], the Wigner
distribution has been widely applied in different fields
of study ranging from statistical mechanics and optics
[2–6] in physics to more applied fields such as electri-
cal engineering and even seismology [7]. In physics,
the Wigner distribution has been utilized to bring the
machinery of phase-space statistical mechanics into the
study of quantum physics [8]. The Wigner distribution
provides a comprehensive characterization of the sys-
tem, and as a quasiprobability distribution the negativity
of the Wigner distribution signals a wave-like behavior
[9, 10].

The orbital angular momentum (OAM) of single pho-
tons has lately been identified as a valuable platform for
realizing multilevel quantum systems [11, 12]. The dis-
crete nature of OAM makes it attractive for encoding
quantum [13] and classical information [14]. The ongoing
research suggests that there is no fundamental limit to
the maximum value of OAM that a photon can carry. In
a recent experiment, quantum entanglement was demon-
strated between states differing by 600 in their value of
OAM [15]. However, the full characterization of a quan-
tum state in the Hilbert space of OAM poses a serious
experimental challenge.

A large body of previous research has enabled efficient
and accurate projective measurements of light’s OAM
[12, 16–21]. Quantum mechanically, a pure state in the
Hilbert space of OAM is described by a discrete state
vector. Thus, the probability distribution provided by
projective measurements along with the knowledge of
relative phase between the different OAM components
found by interferometry adequately describes a pure state
[22]. Nevertheless, pure states are only a restricted set of
physical states, because the vast majority of conceivable
states are mixed states [23]. The most general descrip-
tion of a quantum state requires knowledge of its den-
sity matrix, which can be found through use of standard
quantum state tomography [24, 25]. However, quantum
state tomography in the OAM basis requires the capa-
bility to perform projective measurements on arbitrary

superpositions of two or more OAM eigenstates [26], a
task that remains challenging due to technical limitations
such as variations in the efficiency of measuring differ-
ent OAM modes and the cross-talk between neighboring
modes [27].

In this article, we propose and demonstrate a method
for obtaining the Wigner distribution for the azimuthal
structure of light as an alternative to conventional quan-
tum state tomography. This is, to our knowledge,
the first experimental characterization of the azimuthal
Wigner distribution, a concept that has been a topic
of extensive theoretical investigation for the last three
decades [28–37]. Our experiment provides valuable in-
sight into understanding the wave behavior of the light
field in the conjugate bases of OAM and azimuthal angle,
as well as a method for comprehensive characterization of
the OAM of single photons that can be used for quantum
information applications.

We begin our analysis by considering a quantum sys-
tem with an unknown density matrix, ρ̂, in the basis
of azimuthal angle, θ. Further, we choose to work in
a finite-dimensional state space spanned by the orbital-
angular-momentum eigenvectors |`〉 with {|`| ≤ N}. In
this subspace, the (discrete) Wigner distribution function
reads [31, 32]

W (θ, `) =
1

d

N∑
φ=−N

exp

(
−4πi

d
`φ

)
〈θ − φ|ρ̂|θ + φ〉. (1)

Here, d = 2N + 1, and θ ∈ {−N, . . . , N} denotes the
discrete angular coordinate. We have defined an angular
(ANG) eigenstate via a discrete Fourier transform of the
OAM states

|θ〉 =
1√
d

`=+N∑
`=−N

exp

(
−2πi

d
θ`

)
|`〉. (2)

Note that the ANG states satisfy the periodicity prop-
erty:

|θ + d〉 = |θ〉, (3)
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FIG. 1. Left: Schematic diagram for experimental characterization of a structured laser beam. Middle and right: Experimental
results for characterization of an OAM mode with ` = −1. The plots in the middle column shows the density matrix in the
ANG basis, and the plots in the right column present the azimuthal Wigner distribution along with the corresponding marginal
distributions in the ANG and OAM bases.

as expected. The ANG states have previously been in-
troduced in the literature for the purpose of development
of angular rotation operators [31, 32, 38], for extending
the BB-84 QKD protocol to the OAM basis [13, 39], and
for violation of Bell-inequalities with angular variables.
[40].

Next, we introduce an ancillary qubit in a different
state space, here namely polarization, which is used as a
pointer. We assume that the pointer is initially prepared
in the state |+〉 = (|H〉 + |V 〉)/

√
2, where |V 〉 and |H〉

stand for vertical and horizontal polarization states. The
density matrix associated with the ancilla and azimuthal
spaces is given by Ω̂ = ρ̂ ⊗ |+〉〈+|. In the next step, we
consider the unitary evolution of the joint system-pointer
state characterized by the operator

Û(τ) = exp

(
−2πi

d
τL̂⊗ σ̂z

)
. (4)

Here, L̂ is the orbital angular momentum operator di-
rected along with the optical axis and σ̂z = |H〉〈H| −
|V 〉〈V |, which is one of the Pauli operators for the
pointer. Heuristically, the operator Û describes a
polarization-sensitive rotation by the angle τ [41, 42]. Af-
ter this transformation, the system-pointer state is found
as Λ̂(τ) = Û†(τ)Ω̂Û(τ).

The unitary interaction Û results in an entangled
system-pointer state. Post-selection on a specific angular
state θ leads to a reduced density matrix of the pointer:

σ̂ =
〈θ|Λ̂|θ〉

Tr
[
〈θ|Λ̂|θ〉

] . (5)

We can directly find the elements of the density matrix
ρ̂ by measuring the expectation values of the Pauli oper-
ators σ̂x = |H〉〈V |+ |V 〉〈H| and σ̂y = i|V 〉〈H| − i|H〉〈V |

for the pointer. This calculation can be performed
by using the shift property of the angular eigenstates,
exp [−(2πi/d)τL̂]|θ〉 = |θ + τ〉. Here, we have θ± = θ±τ .
Using this notation we find that

〈σ̂x(θ, τ)〉 = Tr [σ̂xσ̂] =
2

N(θ, τ)
Re [〈θ+|ρ̂|θ−〉] ,

〈σ̂y(θ, τ)〉 = Tr [σ̂yσ̂] =
2

N(θ, τ)
Im [〈θ+|ρ̂|θ−〉] . (6)

Here, N(θ, τ) = Tr[〈θ|Λ̂|θ〉] is a normalization factor.
The pair of equations in Eq. (6) can be inverted read-
ily to find 〈θ+|ρ̂|θ−〉. Thus we have found elements of
the density matrix in the ANG basis by performing a
rotation of value τ , followed by a post-selection on |θ〉.
Note that in this procedure we separately find the real
and imaginary parts of the density matrix by measuring
the expectation values of the two conjugate variables of
the pointer, σ̂x and σ̂y. The approach detailed above pro-
vides the density matrix in the d-dimensional basis of |θ〉.
Having found density matrix in the angular basis, we can
use Eq. (1) to find the azimuthal Wigner distribution.

Figure 1 illustrates our experimental setup. We use the
light beam from a 3 mW He-Ne laser (633 nm), that is
coupled to a single-mode fiber (SMF) and then expanded
to uniformly illuminate the display of an SLM. The SLM
is used to realize computer generated holograms for cre-
ating arbitrary spatial modes [43]. We use a Dove prism
inside a Sagnac interferometer for realizing the rotational
transformation Û . The beam is set to the 45◦ polariza-
tion state before the interferometer. We use quarter- and
a half-wave plates along with a polarizing beam splitter
(PBS) for realizing the measurement of 〈σ̂x〉 and 〈σ̂y〉.

It is possible to experimentally realize projection onto
angular states defined in Eq. (2) with a series of custom
optical elements [21, 44]. However, post-selection on an
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FIG. 2. a : The intensity pattern of a pure superposition (top) and (bottom) an incoherent mixture of ` = 1 and ` = −1 OAM
modes with equal weights. b : The azimuthal Wigner distribution from the experiment. c : The marginal distributions in the
OAM and ANG bases. d : The real part of the OAM density matrices.

angular wedge with sharp boundaries is a much simpler
task that provides all necessary information for finding
the density matrix in the ANG basis. We achieve this
task by recording the intensity of the beam at the two
output ports of the PBS with a charge-coupled device
(CCD) camera. Once we record the intensity in the form
of an image, it can be binned to a sequence of num-
bers that correspond to post-selection on multiple an-
gular states. In the supplementary material we have de-
tailed the process of converting measurement results onto
the elements of density matrix in the ANG basis.

To confirm our characterization method, we test it on a
series of different states. Figure 1 also shows experimen-
tal results for the characterization of an |` = −1〉 OAM
mode generated by the SLM. It is evident that the state
primarily constitutes the |` = −1〉, and that it includes
(approximately) equal components of ANG states. We
calculate the reasonably high fidelity of the characterized
state with |` = 1−〉 as 90%, testifying to the high qual-
ity of the generation and the characterization procedure
[45]. We have used the standard method of maximum-
likelihood estimation to find a positive-definite density
matrices in the ANG basis from the experimental data
[46].

As another test, we generate and characterize an equal
superposition of the OAM states |` = 1〉 and |` = −1〉.
A pure superposition state is generated directly through
the use of a computer generated hologram. To create
a mixed state, we use a computer to randomly switch
the SLM between two holograms designed for generating
` = 1 and ` = −1 modes [47]. The mode switching oc-
curs at a rate of 60 Hz, and we use a long (10 s) exposure
time on the CCD to guarantee uniform averaging over
the changing beam structure. Figure 2 shows the inten-
sity patterns and the measured Wigner distributions for
the two states. It is evident that marginal distributions

in the OAM bases are nearly identical, demonstrating the
two prominent contributions from |` = 1〉 and |` = −1〉
in both cases. However, the Wigner distributions and
the marginal distributions in the ANG bases are entirely
different. For the pure superposition, we observe an in-
terference pattern in the ANG marginal, and negative
values on the |` = 0〉 portion of the Wigner distribu-
tion. For the incoherent mixture, we see no interference
in the ANG marginals, and the |` = 0〉 portion of the
Wigner distribution remains positive. This is a mani-
festation of a well known property of the Wigner distri-
bution. Namely, wave interference gives rise to negative
values on the Wigner distribution, whereas such a pat-
tern is absent for an incoherent mixture.

We have mapped the Wigner distribution onto the
OAM density matrix for the states presented in Fig. 2.
The degree of coherence between the OAM components
|` = 1〉 and |` = −1〉 can now be quantified by the mag-
nitude of the off-diagonal elements of the density matrix.
We calculate the degree of coherence using the relation

γ =
|ρ(−1, 1)|√

|ρ(1, 1)||ρ(−1,−1)|
. (7)

We find the degree of coherence for the two states under
consideration as γpure = 0.80 and γmixed = 0.06. For the
pure superposition state, we attribute the reduction from
unity of the degree of coherence to the imperfections in
the generation of the state and the averaging over the
non-uniform radial structure of the laser beam. In addi-
tion to the results presented above, we have tested our
method on a number of different states in the angular
and OAM bases [48].

The high photon efficiency of our method makes it
suitable for characterization of quantum sources of light,
which are often severely limited in the photon flux. We
test our method by characterizing the transverse struc-
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FIG. 3. Left: Single photons from non-degenerate parametric down-conversion are separated by a dichroic mirror. The idler
photons (830 nm) are detected by an APD, which heralds the detection of signal photons (790 nm) with an ICCD. A q-plate
(q = 1/2) is placed between two crossed polarizer to prepare an equal superposition of ` = 1 and ` = −1 OAM modes. Inset:
The transverse structure of single photons captured with an accumulation of 5-ns-coincidence events over a 1200 sec exposure
time. Right: The Wigner distribution, the OAM and ANG marginals, and the real and imaginary parts of the OAM density
matrix from experiment.

ture of heralded single photons using the setup depicted
in Fig. 3. We generate pairs of photons by pumping a
periodically poled potassium titanyl phosphate crystal
(PPKTP) with the beam from a 405 nm laser diode [49].
The type-0 parametric down conversion converts a pho-
ton of the pump beam to a pair of signal and an idler
photons at the wavelength of 790 nm and 830 nm re-
spectively. We separate the two photons of each pair
with a dichroic mirror. The idler photons are collected
with a lens and detected using an avalanche photo-diode
(APD). The signal photons are sent through a q-plate
that is sandwiched between two crossed polarizers. We
use a q-plate with a charge of 1/2 to shape the transverse
structure of the photon to a superposition of |` = 1〉
and |` = −1〉 states [50]. The structured photons are
sent through the Sagnac interferometer described above.
We use an Andor iStar intensified charge coupled device
(ICCD) camera for detecting the heralded single photons
[51]. Each detection event is triggered by the electronic
signal from the APD in a 5 ns time window. Figure 3
displays the structure of the shaped signal beam from
a 1200 sec exposure. We combine our measurement re-
sults for the different rotation angles to find the Wigner
distribution and subsequently map it to the OAM den-
sity matrix (see Fig. 3). The Wigner distribution exhibits
regions of substantial negative value for ` = 0 portion,
which demonstrated quantum interference between ` = 1
and ` = −1 components of the state.

We conclude our remarks by analyzing the scaling of
our characterization technique. For the full characteriza-
tion of the density matrix in a Hilbert space of dimension
d = 2N+1, one needs to measure d2−1 unknown quanti-
ties [25]. The quadratic scaling of the number of required
measurement has posed a long-standing challenge for

measuring states with large dimensions [52, 53]. Through
the use of a CCD/iCCD camera for post-selection, we
are able to sequence individual images to find d elements
of the density matrix simultaneously. This is a crucial
practical advantage since our measurement time scales
linearly (as apposed to quadratically) with the dimension
size of the state. We believe the maximum dimensional-
ity achievable by our technique is limited by the precision
of beam rotations, and not the measurement time. The
mechanical stability of the Dove prism in our setup limits
d to about 90 [45].

In summary, we have demonstrated a technique for
the full characterization of the azimuthal structure
of a photon wavefunction. We have achieved this
task by finding the azimuthal Wigner distribution via
projections in the angular basis. We have used a linear
transformation to map the Wigner distribution onto the
OAM density matrix. We have tested our technique
by applying it to the characterization of both classical
laser beams and heralded single photons. However,
the formalism presented here can be applied to the
tomography of any finite-dimensional quantum system,
such as an electromagnetic mode of a cavity in a level
blockade configuration [54], or the spin of a material
particle [55]. Our approach readily scales to very large
dimensions, involves no photon loss from post-selection,
and is capable of characterizing partially coherent OAM
states. To our knowledge, this technique is the only
approach that is capable of simultaneously achieving
these goals. We anticipate that the presented method for
characterization of the azimuthal Wigner distribution
will constitute an essential part of quantum information
protocols that employ the azimuthal structure of single
photons.
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and Z. Hradil, Annals of Physics 326, 426 (2011).
[38] S. M. Barnett and D. T. Pegg, Phys. Rev. A 41, 3427

(1990).
[39] D. Giovannini, J. Romero, J. Leach, A. Dudley,

A. Forbes, and M. Padgett, Phys. Rev. Lett. 110, 143601
(2013).

[40] C. V. S. Borges, A. Z. Khoury, S. Walborn, P. H. S.
Ribeiro, P. Milman, and A. Keller, Phys. Rev. A 86,
052107 (2012).

[41] O. S. Magaña-Loaiza, M. Mirhosseini, B. Rodenburg,
and R. W. Boyd, Phys. Rev. Lett. 112, 200401 (2014).

[42] B. Piccirillo, S. Slussarenko, L. Marrucci, and E. San-
tamato, Nat. Commun. 6, 8606 (2015).

[43] V. Arrizón, U. Ruiz, R. Carrada, and L. A. Gonzalez,
JOSA A 24, 3500 (2007).

[44] M. N. O’Sullivan, M. Mirhosseini, M. Malik, and R. W.
Boyd, Opt. Express 20, 24444 (2012).

[45] For an analysis of the error sources please refer to the
supplementary materials.

[46] R. T. Thew, A. G. White, and W. J. Munro, Phys. Rev.
A 66, 012303 (2002).

[47] B. Rodenburg, M. Mirhosseini, O. S. Magaña-Loaiza,
and R. W. Boyd, JOSA B 31, A51 (2014).

[48] See the supplementary materials.
[49] F. Steinlechner, P. Trojek, M. Jofre, H. Weier, D. Perez,

T. Jennewein, R. Ursin, J. Rarity, M. W. Mitchell, J. P.
Torres, H. Weinfurter, and V. Pruneri, Opt. Express 20,
9640 (2012).

[50] L. Marrucci, C. Manzo, and D. Paparo, Phys. Rev. Lett.
96, 163905 (2006).

[51] R. Fickler, M. Krenn, R. Lapkiewicz, S. Ramelow, and
A. Zeilinger, Sci. Rep. 3 (2013).

[52] M. Agnew, J. Leach, M. McLaren, F. S. Roux, and R. W.
Boyd, Phys. Rev. A 84 (2011).

[53] M. Mirhosseini, O. S. Magaña-Loaiza, S. M.
Hashemi Rafsanjani, and R. W. Boyd, Phys. Rev.
Lett. 113, 090402 (2014).

[54] L. Bretheau, P. Campagne-Ibarcq, E. Flurin, F. Mallet,
and B. Huard, Science 348, 776 (2015).

[55] X. Ji, X. Xiong, and F. Yuan, Phys. Rev. Lett. 109,
152005 (2012).


