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Certain biological reactions, such as receptor-ligand binding at cell-cell interfaces and macro-
molecules binding to biopolymers, require many smaller molecules crowding a reaction site to be
cleared. Examples include the T cell interface, a key player in immunological information process-
ing. Diffusion sets a limit for such cavitation to occur spontaneously, thereby defining a timescale
below which active mechanisms must take over. We consider N independent diffusing particles in a
closed domain, containing a sub-region with N0 particles, on average. We investigate the time until
the sub-region is empty, allowing a subsequent reaction to proceed. The first passage time is com-
puted using an efficient exact simulation algorithm and an asymptotic approximation in the limit
that cavitation is rare. In this limit, we find that the mean first passage time is sub-exponential,
T ∝ eN0/N2

0 . For the case of T cell receptors, we find that stochastic cavitation is exceedingly slow,
109 seconds at physiological densities, however can be accelerated to occur within 5 second with
only a four-fold dilution.

Diffusion drives many biological processes, both posi-
tively, by delivering cargo to a target, and negatively, by
removal of cargo from a region of interest (ROI). While
the temporal dynamics of diffusional delivery have been
extensively studied [1–4], diffusion-driven removal has
been less characterized experimentally or theoretically
[5]. Removal is of particular interest in the crowded en-
vironment of cells, where large biomolecules and cellular
structures require the displacement of smaller molecules,
a phenomenon we term stochastic cavitation.

A specific example arises in the study of cell-cell in-
terfaces including the T-cell/antigen-presenting-cell in-
terface [6–9] (see Fig. 1). A fundamental question for all
cell-cell interfaces is how receptors and ligands come into
contact, despite being separated by large molecules, the
extracellular fluid, and other structures in the glycocalyx.
On either cell surface, large molecules such as CD45 and
LFA-1 undergo 2D diffusion in the cell membrane with
a diffusion coefficient of D ∼ 0.1µm2/s [10, 11]. These
large molecules impair interactions between smaller pairs
of molecules, such as the T cell receptor and its ligand—

FIG. 1. Cell-cell interface formation between a T-cell and
an antigen-presenting cell. CD45 molecules (black) block the
receptor-ligand (purple) bond from forming while they inhabit
the ROI (orange).

a key step in immunological information processing and
decision-making. It has been estimated that a region of
radius ∼ 100nm, devoid of large molecules, is necessary
for spontaneous T cell receptor interaction [7], which is
occupied by on average ∼ 30 particles at equilibrium. A
natural question is whether this empty region can form
spontaneously in a biologically relevant time. Under-
standing contact formation will address cell-cell interac-
tions in the crowded, heterogeneous environment inside
organisms and what machinery is necessary for general
cell-cell interactions [12, 13].

Examples of diffusional cavitation in biology also arise
in other dimensionalities. In 1D, microtubules (inflexible
polymers of the protein tubulin) are decorated by hun-
dreds of microtubule-associated proteins [14, 15]. These
proteins exhibit significant crowding [16] and lateral dif-
fusion along the microtubule lattice [17, 18]. Large
microtubule-binding molecules may therefore have to
wait for a region to be clear before binding. What is
the mean time for such clearance, and is it the rate-
limiting step in microtubule binding? A similar situa-
tion occurs for DNA and the myriad of DNA-binding
molecules, some of which undergo lateral diffusion across
base pairs [19, 20]. A significant waiting-time for large
DNA-binding molecules has potential implications for the
study of the chemical modification of DNA and RNA, all
of which require an enzyme to attach to the polymer.

For some of the above scenarios, it has been hypothe-
sized that clearance of the target region requires an ac-
tive process [7, 21]. To address the feasibility of pas-
sive diffusion-driven cavitation, a theoretical assessment
of the timescales involved is needed. In other words, can
diffusion-driven cavitation reliably occur on biologically
relevant timescales? To address this question, we con-
sider N independent particles undergoing simple diffu-
sion in either the 1D domain (−L,L) or the 2D domain
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(−L,L)2. In each case, we study the first-passage time
until a smaller region, a disk of radius L0, is empty.

The cavitation event can be rare (i.e., the first pas-
sage time can be very large compared to the diffusion
timescale L2/D) under certain circumstances. To un-
derstand this, consider the 1D domain with N particles.
At equilibrium, each particle has a uniformly distributed
postion within the domain. In the limit L → ∞ and
N → ∞ with the average particle density ϕ = N/(2L)
fixed, the equilibrium probability of finding a region of
radius L0 containing no particles is small, P = e−N0 ,
where N0 = 2Lϕ. Therefore, when N0 � 1 we expect
cavitation to be a rare event. Although we might ex-
pect the 1D mean first-passage time (MFPT) to scale as
T ∝ P−1 ∼ eN0 [22], we instead we find an asymptotic
scaling of T ∝ eN0/N2

0 .
In this Letter, we develop a simulation algorithm to

efficiently generate exact realizations of the first passage
time, based on Green’s function reaction dynamics [23].
For situations where cavitation is a rare event and com-
putation becomes unfeasible, i.e., when N is very large or
the ROI occupies most of the explorable area, we develop
an asymptotic approximation of the mean first passage
time.

Consider N independent random walkers Yn(t), with
n = 1, · · · , N , that are confined to the interval −L <
y < L. The ROI is the inner domain centered at the
origin with radius L0 < L. The event we wish to char-
acterize is the first time at which the ROI is empty
(i.e., minn{Yn(t)} = L0). We first nondimensionalize
the problem using the space scale L and the time scale
L2/D, where D is the diffusion coefficient. We define the
nondimensional distances Rn = |Yn| /L, ε = 1 − L0/L,
and l0 = L0/L. Then, a given particle is inside the ROI
if 0 < Rn < l0.

By formulating a simulation algorithm, we can gen-
erate exact samples of the first passage time. We take
advantage of explicit formulas for the probability distri-
butions that govern single particle Brownian motion in a
closed domain. Note that even though we focus on the
1D and 2D cavitation problem in this letter, exact dis-
tributions are also known for 3D Brownian motion [24].
The algorithm proceeds as follows. Given a set of random
starting positions {Rn(t0)}1≤n≤N , select a particle that
is inside the ROI and closest to the origin. That is, select
Rm = min{Rn} < l0. The first step is to compute the
first time τ at which the selected particle leaves the ROI
(i.e., Rm(t0 + τ) = l0). Once τ has been computed, set
t′ = t0+τ . The cavitation event cannot have occurred be-
fore time t′ because we are certain that Rm(t) < l0 for all
t0 < t < t′. Therefore, the position of the other particles
between time t0 and time t′ is irrelevant, we need only
generate the random position for each of the remaining
particles at time t′. Once all positions have been up-
dated, select a new Rm = min{Rn(t′)}. We know that
the cavitation event has occurred if Rm ≥ l0. If Rm < l0,

then set t0 = t′ and repeat the above procedure.
At each step, the jump times τ can be sampled from

the exact distribution f(τ |r0), obtained from the funda-
mental solution to the diffusion equation with a reflecting
boundary at r = 0 and an absorbing boundary at r = l0.
The random positions can be sampled from the distribu-
tion p(r|r0, τ), satisfying the diffusion equation with re-
flecting boundaries at r = 0 and r = 1. An efficient way
of sampling from p is to use a rejection method, similar
to the one described in [23]. For the jump time sam-
pled from f , we found that the rejection method could
not easily be adapted to our situation. Instead, we sam-
ple the jump time using a root finding algorithm. Ad-
ditional details are provided in Supplementary Material.
The simulation algorithm is maximally fast in the sense
that only the (average) slowest particle determines the
next event time, allowing us to efficiently access densi-
ties around φL0 ∼ 13. We find this is sufficiently high to
validate our asymptotic approximations.

To obtain a complete picture of cavitation in the rare
event limits, we develop an asymptotic approximation for
the MFPT, T̄ . The approximation is derived for 1D cav-
itation, and based on simulations, we observe that in the
limit L → ∞ with a fixed particle density, the approx-
imation is also surprisingly accurate for 2D cavitation.
We first state the main results (Eqs. 1-5) and then sum-
marize their derivation.

For fixed N , the first term in the asymptotic approx-
imation for 0 < ε � 1 of the MFPT, averaged over a
uniformly distributed initial position for each of the N
particles, is given by

T̄ ∼ 2NAN
(CN ε)N−2

+O(1), N ≥ 3 (1)

where

AN =
Γ(N2 )

2π
N
2 (N − 2)

. (2)

The constant CN is the Newtonian capacitance of a hy-
percube in RN ; as explained below, it determines the far
field behavior of certain solutions to Laplace’s equation
[25]. An explicit formula for the Newtonian capacitance
of a cube forN > 2 is unknown. However, a good approx-
imation forN = 3 is C3 ≈ 1.3214 [26]. The ε� 1 approx-
imation (solid line) is compared to simulations (symbols)
in Fig. 2. For N = 3, we find good agreement between
simulation and the independently derived estimate for C3

from [26]. From physical arguments detailed at the end
of this letter, we have determined an expansion of the
Newtonian capacitance for large N given by

CN ∼
√

2N

πe

(
1 +

3 logN

2N
+
α2

N
+O(N−2)

)
. (3)

The unknown constant in the above expansion is inde-
pendent of all parameters. Using the exact simulation al-
gorithm, we obtain the numerical estimate, α2 ≈ −1.67.
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FIG. 2. The MFPT (in nondimensional units) as a function
of L0/L = 1 − ε. The small ε approximation (solid lines)
is compared to simulations (symbols), using C3 = 1.3214,
C4 = 1.44, and C5 = 1.55.

Our MFPT calculation thus provides an approximation
for the capacitance CN , which otherwise remains chal-
lenging to compute [26].

For fixed 0 < ε < 1, an asymptotic expansion for N �
1 is given by

T̄ ∼ κ1D

N2εN−2
, N � 1, (4)

where κ1D ≈ 2.2 depends only on α2 (via Eq. 19). The
N � 1 MFPT approximation is compared to simulations
in Fig. 3.
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FIG. 3. The large N MFPT approximation (solid lines) com-
pared to simulations (symbols).

Finally, we consider the case the radius of the ROI L0

is fixed and L → ∞ with a fixed number of particles
per unit length ϕ = N/(2L). Let N0 be the average
number of particles in the ROI. The L → ∞ MFPT
approximation (in dimensional units) is

T∞ ∼
κ1DL

2
0e
N0

N2
0D

, N0 � 1. (5)

The MFPT is shown in Fig. 4 as functions of N0, for
different values of L. The approximation (5) matches
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FIG. 4. The MFPT vs N0, the average number of particles in
the ROI. The symbols indicate 103 averaged simulations; the
1D simulations are shown as circles and the 2D simulations
are shown as diamonds. Also shown is the L → ∞ approxi-
mation (dashed curve) for both 1D and 2D. Note that time is
nondimensional using the L2

0/D timescale.

closely with the L/L0 = 33.3 simulations for N0 > 10.
Hence, the effect of a small domain size compared to
the ROI is to increase the MFPT, making the cavitation
event more rare. This provides a quantitative measure
of when the domain size L no longer influences the cav-
itation event, which is relevant when, for example, con-
sidering cavitation on a relatively long strand of DNA
compared to a shorter plasmid. Microtubule filaments
also vary in length.

Simulations of 2D cavitation are also shown in Fig. 4 as
diamond symbols. Although the asymptotic approxima-
tion (5) is derived for 1D, we find that it is a remarkably
good fit to the simulation data after changing a single
parameter: the prefactor κ2D ≈ 0.7. We therefore infer
that cavitation is roughly three times faster in 2D than in
1D. Heuristically, this speed-up occurs because the mean
time for a random walker to escape a spherical region
decreases with dimensionality.

The asymptotic approximations (1)-(5) for 1D cavita-
tion are derived as follows. Because all of the N walkers
are independent, the problem can be reformulated as the
first passage time of a single random walker in a N di-
mensional domain. Define the domain Ω ≡ (0, 1)N , and
let Ωε ≡ (1−ε, 1)N be the small target domain. The ran-
dom process R(t) ∈ Ω\Ωε represents the original process
with R(t) = (R1(t), · · · , RN (t)). Define the MFPT as
T ≡ 〈inf{t > 0 : min1≤n≤N Rn(t) = l0}〉; it satisfies

N∑
n=1

∂2T

∂r2
n

= −1, r ∈ Ω, (6)

∂ηT (r) = 0, r ∈ ∂Ω, (7)
T (r) = 0, r ∈ ∂Ωε. (8)

An approximate solution to (6) can be obtained using
the method of matched asymptotics [27–31]. We split the
solution into two parts: an inner and outer solution. The
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inner solution satisfies the absorbing boundary condition
on ∂Ωε and ignores the reflecting boundary. The outer
solution satisfies the reflecting boundary on ∂Ω and is
singular as r → (1, · · · , 1). The two solutions are then
matched to obtain a uniformly accurate approximation
using the Van–Dyke matching principle [32].

Define the inner coordinates z = r−rb
ε , and let z = ‖z‖.

The inner solution satisfies

∆zw = 0, w(z ∈ ∂ZN ) = 0, (9)

where ZN is the unit hypercube. The exact solution to
the inner problem for arbitrary N is unknown. However,
from electrostatics [33], for large z, the inner solution has
the two term expansion,

w ∼ BN (ε)
[
(z/CN )

2−N − 1
]
, N ≥ 3. (10)

where BN is a constant determined by matching to the
outer solution. The constant CN , called the Newtonian
capacitance, is a boundary dependent term discussed be-
low.

Up to an unknown constant T̃ , the outer solution is

Tout ∼ −GN (r, rb) + T̃ , (11)

where the Green’s function GN satisfies,

N∑
n=1

∂2GN
∂r2
n

= 1− δ(r− r′), r ∈ Ω, (12)

∂ηGN (r, r′) = 0, r ∈ ∂Ω, (13)∫
Ω

GN (r, r′)dr = 0. (14)

By integrating (11) over Ω using (14), we find that T̃ is
the MFPT averaged over a uniformly distributed set of
initial positions, i.e., T̃ = T̄ . Again from electrostatics
[33], in the limit rn → 1 with r′n = 1 and ‖r − r′‖ = εz,
the Green’s function scales like

GN ∼ 2NAN (εz)2−N +O(1), N ≥ 3, (15)

where AN is given by (2).
Matching the inner and outer solutions we find that

the z dependent terms match provided that BN (ε) =
−2NAN ε

2−N for N ≥ 3. The remaining unknown term
T̄ yields the approximation (1).

In order to access the rare event limit where both
N � 1 and ε � 1, we must find how the Newtonian ca-
pacitance CN scales with N . This problem has no known
exact solution for N > 2 [26].

If the cuboid boundary ∂Ωε were replaced by a
spheroid with the same hypervolume, then the Newto-
nian capacitance is known for general N ,

CN ≈
2√
π

Γ

(
1 +

N

2

)1/N

∼
√

2N

πe
. (16)

We therefore propose a general expansion of CN (for the
present case of cuboid boundary) having the same form
as the large-N expansion of (16),

CN ∼
√

2N

πe

(
1 +

α1 logN

N
+
α2

N
+O(N−2)

)
. (17)

Note that (16) and (17) have the same leading-order
term.

To elucidate how the unknown constants α1,2 affect the
large N MFPT approximation, we use Stirling’s formula,
leading to

2NAN

CN−2
N

∼ κ1D

Nβ
, N � 1, (18)

where

β = α1 + 1/2, κ1D =
2√

πeα2+1
. (19)

In dimensional units, the MFPT approximation is

T ∼ L2κ1D

NβD

(
1− L0

L

)2−N

. (20)

We determine the value of α1 by exploiting a physical
constraint as follows. As L → ∞ with the density of
particles ϕ = N/(2L) held constant, the MFPT must
converge to a finite value. Substituting L = N/(2ϕ) and
N0 = 2L0ϕ into (20) yields

T ∼ N2−βκ1D

4ϕ2D

(
1− N0

N

)2−N

. (21)

Since limN→∞
(
1− N0

N

)2−N
= eN0 , we must have that

β = 2 (and therefore α1 = 3/2) in order for (21) to
converge to a finite, nonzero value in the limit (L,N)→
∞. We also find that β = 2 is supported by numerical
simulations (see Supplementary Material). The limiting
result is the approximation Eq. (5).

While the approximation matches well with simula-
tions in 2D, a more systematic asymptotic analysis for
the 2D case should be feasible. For small ε and finite L,
the leading order in (1) holds in 2D. A notable feature
of our 1D case is that there are no terms in the expan-
sion between the leading order term and the O(1) term,
making our 1D approximation converge particularly fast.
This feature is lacking in 2D, where there are other terms
singular in ε, therefore we expect this approximation to
converge more slowly. In 2D for large L at constant den-
sity, a different scaling between N and L prevents the
approximation in (21) from converging, necessitating an
alternative strategy that will be the subject of future re-
search.

Returning to the specific question of cell-cell contact
at T cell interfaces, large diffusing molecules such as
CD45 disfavor proximity between receptors and ligands
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on apposing cells. These molecules have diffusion co-
efficients of D ≈ 0.1µm2/s [10] and density such that
on average there are N0 = 30 molecules in the 100-
nanometer ROI [7]. The approximation (5), using the
prefactor κ2D = 0.7 from the numerical fit to simulations,
yields an estimate of T ≈ 109 seconds. In contrast, the
MFPT for a single particle to escape a circular domain
is T = L2

0/(4D) = 0.025 seconds. Since T cell receptor
triggering occurs within seconds [34], the above calcula-
tion predicts that receptor-ligand binding must involve
a mechanism faster than passive diffusion. We therefore
suggest the alternative hypothesis that an active force
drives receptor-ligand proximity [7]. To obtain an empty
ROI spontaneously in less than five seconds, we would
require N0 ≤ 7, corresponding to a four-fold dilution,
which could be experimentally accessible. The biological
system is complicated by interactions of large molecules
within and between molecular species, lipid heterogene-
ity, and transient immobilization, all of which could be
exploited to dynamically tune the rate of ligand binding
and will be studied by expanding the present framework.

ACKNOWLEDGMENTS

JN was supported by a NSF-funded postdoctoral fel-
lowship (NSF DMS-1100281, DMS-1462992). JA was
supported by a NSF CAREER award (DMS-1454739).

∗ jaynewby@email.unc.edu
† jun.allard@uci.edu

[1] P. Bressloff and J. Newby, Rev. Mod. Phys. , 1 (2012).
[2] H. C. Berg, Random walks in biology (1993).
[3] K. V. Klenin, H. Merlitz, J. Langowski, and C.-X. Wu,

Phys. Rev. Lett 96, 018104 (2006).
[4] D. Coombs, R. Straube, and M. Ward, SIAM J Applied

Math 70, 302 (2009).
[5] E. Ben-Naim and P. L. Krapivsky, J Phys A 43, 495008

(2010).
[6] Y. Kaizuka, A. D. Douglass, R. Varma, M. L. Dustin,

and R. D. Vale, Proc. Natl Acad. Sci 104, 20296 (2007).
[7] J. F. Allard, O. Dushek, D. Coombs, and P. A. Van

Der Merwe, Biophys J 102, 1265 (2012).
[8] B. Rozycki, R. Lipowsky, and T. R. Weikl, New J Phys

12, 095003 (2010).
[9] A. K. Chattopadhyay and N. J. Burroughs, Euro Phys

Lett 77, 48003 (2007).
[10] V. Rajani, G. Carrero, D. E. Golan, G. de Vries, and

C. W. Cairo, Biophys J 100, 1463 (2011).
[11] C. W. Cairo, R. Das, A. Albohy, Q. J. Baca, D. Pradhan,

J. S. Morrow, D. Coombs, and D. E. Golan, J Biol Chem
285, 11392 (2010).

[12] H. S. Goodridge, C. N. Reyes, C. A. Becker, T. R. Kat-
sumoto, J. Ma, A. J. Wolf, N. Bose, A. S. Chan, A. S.
Magee, M. E. Danielson, et al., Nature 472, 471 (2011).

[13] B. Shergill, L. Meloty-Kapella, A. A. Musse, G. Wein-
master, and E. Botvinick, Developmental cell 22, 1313
(2012).

[14] B. Alberts, A. Johnson, J. Lewis, M. Raff, and
K. Roberts, Molecular Biology of the Cell (Garland,
2014).

[15] R. Rouzier, R. Rajan, P. Wagner, K. R. Hess, D. L. Gold,
J. Stec, M. Ayers, J. S. Ross, P. Zhang, T. A. Buchholz,
H. Kuerer, M. Green, B. Arun, G. N. Hortobagyi, W. F.
Symmans, and L. Pusztai, Proc. Natl Acad. Sci 102,
8315 (2005).

[16] L. Conway, D. Wood, E. Tuzel, and J. L. Ross, Proc.
Natl Acad. Sci 109, 20814 (2012).

[17] R. Dixit, J. L. Ross, Y. E. Goldman, and E. L. F.
Holzbaur, Science 319, 1086 (2008).

[18] J. Helenius, G. Brouhard, Y. Kalaidzidis, S. Diez, and
J. Howard, Nature 441, 115 (2006).

[19] P. Hammar, P. Leroy, A. Mahmutovic, E. G. Marklund,
O. G. Berg, and J. Elf, Science 336, 1595 (2012).

[20] K. McKinney, M. Mattia, V. Gottifredi, and C. Prives,
Molecular Cell 16, 413 (2004).

[21] F. J. Hoerndli, D. A. Maxfield, P. J. Brockie, J. E.
Mellem, E. Jensen, R. Wang, D. M. Madsen, and A. V.
Maricq, Neuron 80, 1421 (2013).

[22] This problem is equivalent to the diffusion of a particle in
ND dimensions (the product of number of particles and
dimensionality of space). Since ND � 2, this Brownian
motion is not recurrent, so we might naively expect the
system to be well-mixed in ND-dimensional phase space,
and the rate of first passage would be the attempt rate
times the probability of being in the target state.

[23] T. Oppelstrup, V. V. Bulatov, A. Donev, M. H. Kalos,
G. H. Gilmer, and B. Sadigh, Phys. Rev. E 80, 066701
(2009).

[24] H. S. Carslaw and J. C. Jaeger, Conduction of heat in
solids, 2nd ed. (Clarendon Press, Oxford, 1959).

[25] F. Spitzer, Probability theory and related fields 3, 110
(1964).

[26] C.-O. Hwang, M. Mascagni, and T. Won, Mathematics
and Computers in Simulation 80, 1089 (2010).

[27] M. Ward and J. Keller, SIAM J Applied Math 53, 770
(1993).

[28] S. Condamin, O. Bénichou, and M. Moreau, Phys. Rev.
E 75, 021111 (2007).

[29] Z. Schuss, A. Singer, and D. Holcman, Proc. Natl Acad.
Sci 104, 16098 (2007).

[30] A. F. Cheviakov and M. J. Ward, Mathematical and
Computer Modelling 53, 1394 (2011).

[31] S. A. Isaacson and J. Newby, Phys. Rev. E 88, 012820
(2013).

[32] J. P. Keener, Principles of Applied Mathematics (Perseus
Books, Cambridge, Mass., 2000).

[33] J. D. Jackson, Classical Electrodynamics (John Wiley
and Sons, 1962).

[34] O. Dushek, R. Das, and D. Coombs, PLoS Comput Biol
5, e1000578 (2009).

mailto:jaynewby@email.unc.edu
mailto:jun.allard@uci.edu

	First-passage time to clear the way for receptor-ligand binding in a crowded environment
	Abstract
	Acknowledgments
	References


