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First-principles-based effective Hamiltonian simulations are used to reveal the hidden connection
between topological defects (hedgehogs and antihedgehogs) and relaxor behavior. Such defects
are discovered to mostly lie at the border of polar nanoregions in both Ba(Zr0.5Ti0.5)O3 (BZT)
and Pb(Sc0.5Nb0.5)O3 (PSN) systems, and the temperature dependency of their density allows to
distinguish between non-canonical (PSN) and canonical (BZT) relaxor behaviors (via the crossing
or not of a percolation threshold). This density also possesses an inflection point at precisely the
temperature for which the dielectric response peaks. Moreover, hedgehogs and antihedgehogs are
found to be mobile excitations, and the dynamical nature of their annihilation is demonstrated
(using simple hydrodynamical arguments) to follows laws, such as Vogel-Fulcher and Arrhenius,
that are those characteristic of dipolar relaxation kinetics of relaxor ferroelectrics.

PACS numbers: 77.80.Jk, 77.80.B-, 74.62.En, 77.84.Cg

Relaxor materials form a class of disordered ferro-
electrics embodying an intriguing case of the effect of
quenched randomness on physical properties. A primary
feature at the origin of their anomalous and technologi-
cally prominent properties is the emergence of inhomo-
geneous local order, and especially intriguing is its en-
suing complex relaxation process [1–5]. It is commonly
accepted that the confinement of polar order to within
randomly oriented nanoregions is the result of the in-
terplay between compositional disorder and the underly-
ing ferroelectric phase instability [2, 3]. Deviations from
mean-field expectations have been associated with the
onset of an ergodic relaxor state below Td, the so-called
Burns temperature where local order first nucleates [6].
On cooling, as the correlation length for dipolar fluctua-
tions increases, polar regions grow in size, and depending
on the kinetics of their development [7], ultimately show
either canonical or non-canonical behavior [2, 3]. In non-
canonical relaxors such as Pb(Sc0.5Nb0.5)O3 (PSN) [7–
9], polar regions percolate the whole sample and yield
a static, cooperative relaxor-to-ferroelectric spontaneous
phase transition at the Curie temperature, TC , while
in canonical relaxors such as Ba(Zr0.5Ti0.5)O3 (BZT)
(BZT) [10], they exhibit a dynamic slowing down of their
fluctuations therefrom frustrating and impeding the de-
velopment of long-range order. The dielectric relaxation
(prior to the spontaneous phase transition in the case
of PSN) characterizes the relaxor behavior. Moreover,
in the relaxor state, the system has an average cubic
symmetry. Interestingly, due to its wide applicability
to many relaxational phenomena exhibiting cooperative
behavior [2, 11], the so-called Vogel-Fulcher (VF) rela-
tion [12, 13] is often empirically used to analyze relax-
ation kinetics in relaxors [2, 3, 11], although no micro-
scopic prescription has been firmly established for such

relation. It is given by:

τ = τ∞ exp[U/k(T − T0)], (1)

where the reference temperature T0 can be interpreted as
the dipolar freezing temperature for the relaxation pro-
cess, and viewed as defining a transition from an ergodic
relaxor state to a nonergodic state [2].

In spite of abundant experimental investigations and
numerous theoretical formulations [14–21], the subject
of the relaxor behavior remains non-exhausted. Partic-
ularly, a criterion for discerning between canonical and
non-canonical behaviors is still lacking. One may also
wonder whether a connection (presently unknown) be-
tween relaxor behavior and topological defects [22, 23] ex-
ists, especially when realizing that some models proposed
to explain relaxor behavior are based on the existence
of locally-ordered polar nanoregions embedded within a
disordered matrix [2, 3], while point topological defects
are known to occur wherever the order changes discon-
tinuously [24], thereby concentrating distortions and en-
abling the surrounding medium to be locally ordered.
Intuitively, invoking a topological analysis for relaxor be-
havior therefore rests upon the characteristic inhomoge-
neous local order. Since polar regions can locally adopt
different low-symmetry polar states, wherever incompat-
ible choices of symmetry breaking arise singularities in
the dipolar order parameter vector field [22] can be ex-
pected to spontaneously form – therefore resulting in the
creation of topological defects.

Finding such hypothetical connection between relax-
ors and topological defects will be of large importance
since, owing to their ubiquitous nature, topological en-
tities such as hedgehogs (point defect in three dimen-
sions) and vortices (point defect in two dimensions) are
now widely recognized as constituting a prime topic in
different areas of physics, including ferroelectrics [25].
They have been studied and experimentally observed in
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various systems, ranging from cosmology [26–28] to liq-
uid crystals [29], often revealing common logic among
seemingly unrelated systems and offering the possibil-
ity of dually recasting the systems (thermo)dynamics in
formulations solely based on discrete sets of topological
charges [30]. They are often expected to form sponta-
neously in proximity to many different types of phase
transitions [31, 32] and have been of crucial relevance
for understanding otherwise dormant and unexplored
properties such as those featured in superfluids, super-
conductors, liquid crystal and crystals. Indeed, many
features of these systems, such as plastic deformation
of solids, the Kosterlitz-Thouless transition of the two-
dimensional XY model [33], the dislocation-unbinding
melting of solids [34], the formation of colloidal crystals
in nematic liquid crystals to cite but a few, are dictated
by their defects rather than by the properties of most of
their bulk. Adding relaxor ferroelectrics to that list of
materials thus stands as an exciting possibility.

In this study, we thus seek to isolate and exploit
point topological defects [22, 23] in view of examining
whether such features correlate to the relaxor behavior,
and whether they shed new light on relaxors. We nu-
merically access the temperature evolution of the den-
sity ρ of topological point singularities (hedgehogs and
antihedgehogs) for BZT and PSN, and identify the per-
colation threshold pc of defects as a criterion for dis-
criminating between canonical (BZT) and non-canonical
(PSN) relaxor behaviors. Furthermore, evidence of the
dynamical nature of topological defects enables resorting
to a hydrodynamic description involving a two-species
diffusion-annihilation process among hedgehogs and an-
tihedgehogs, which yields in turn the characteristic re-
laxation kinetics laws of relaxors.

Here, using first-principles based effective Hamilto-
nians [35–37], we numerically investigate the behavior
of hedgehogs and antihedgehogs in BZT and PSN re-
laxor ferroelectrics (see supplemental material [38] for a
description of the effective Hamiltonian methodological
framework). We consider random distribution of B-sites
cations for both systems and perform Monte Carlo simu-
lations on 12×12×12 and 18×18×18 periodic supercells
for Ba(Zr0.5Ti0.5)O3 and Pb(Sc0.5Nb0.5)O3, respectively,
using at least 2 × 105 thermalization sweeps (note that
PSN exhibits much stronger random fields than BZT
[35, 36] and that modeling well such fields requires the
use of larger supercells). The calculations begin at high
temperature from a cold start, and the temperature is
then decreased in small steps to get well-converged re-
sults. We note that while the effective Hamiltonian em-
ployed to simulate the properties of BZT [35] yields char-
acteristic temperatures in concordance with those ex-
perimentally reported (it, e.g., gives a Burns tempera-
ture of Td ∼ 450 K, agreeing with the measured value
given in Ref. [10]), the one used to simulate the prop-
erties of PSN overestimates characteristic temperatures
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FIG. 1. (a) Temperature evolution of the density ρ of point
topological defects (averaged over MC sweeps) for BZT and
PSN. Solid lines correspond to exponential fits in the relaxor
range. Horizontal dashed line indicates the site percolation
threshold pc. Vertical dashed line indicates the temperature
at which the pc line intersects the defects density of PSN
(∼ 380 K). (b) Schematic illustration of point topological de-
fects at atomic scale. Yellow spheres correspond to B-sites
to which local dipole moments (arrows) are allocated. The
enclosed defect in the unit cell is (b1) a hedgehog correspond-
ing to a source-like dipolar pattern or (b2) an antihedgehog
corresponding to a sink-like dipolar pattern. (c) Transverse
cross sectional view of PSN supercell for T=430 K showing
the polar clusters (hatched regions) and the location of defects
(circles) projected on the plane.

(it yields a maximum of the static dielectric response
occurring at the temperature Tm ∼ 950 K while the re-
ported experimental value is of 380 K [7]). Such discrep-
ancy arises from the fact that the effective Hamiltonian of
PSN [36, 37] does not incorporate oxygen octahedral tilt-
ings as degrees of freedom, which compete against the for-
mation of electrical dipoles (via a repulsive bi-quadratric
energy coupling these tiltings and dipoles [47]). We thus
decided to rescale the temperature by substracting 570 K
for PSN. We also follow Refs.[48–50] in order to assign a
topological charge Q within each of the unit cells com-
posing the supercell. Within this procedure, Q is guar-
anteed to be an integer and the net topological charge
(that is, the sum of the topological charges within the
supercell) is ensured to be zero as the considered sys-
tems are defined with periodic boundary conditions. We
numerically found that the magnitude of the non-zero
topological charges present in the investigated systems is
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almost always equal to unity. A hedgehog carries a charge
Q = +1 (Fig. 1(b1)) while an antihedgehog carries the
opposite charge, Q = −1 (Fig. 1(b2)).

Let us now define the density ρ of topological defects
as the ratio of topologically defective cells (i.e., contain-
ing hedgehogs or antihedgehogs) to the supercell volume.
Figure 1(a) shows the evolution of the thermal average
of ρ with temperature in both BZT and PSN. Moreover
and in order to relate ρ to (macroscopic and microscopic)
properties of these two relaxor ferroelectrics, Fig. 2 re-
ports the temperature derivative dρ/dT of the defects
density along with the average diagonal component of the
dielectric susceptibility tensor χ = (χ11+χ22+χ33)/3, as a
function of temperature in both BZT and PSN. Such lat-
ter tensor is practically calculated as in Refs. [35, 51, 52].
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FIG. 2. Evolution with temperature of the Edwards-Anderson
parameter qEA (in arbitrary units), the specific heat C (in ar-
bitrary units), one third of the trace of the dielectric suscepti-
bility tensor χ (102), and the derivative dρ/dT of the defects
density for BZT (upper panel) and PSN (lower panel).

Figure 2 also displays the evolution with temperature
of the Edwards-Anderson-like parameter qEA, which is
computed as qEA = 〈〈ui〉2s〉i, where the inner averag-
ing is performed on the s Monte Carlo sweeps while the
outer one is made over the i lattice sites [35]. It also
shows the temperature dependency of the specific heat C,
which is extracted from the supercell energy fluctuations,
kBT

2C =
〈
E2

〉
−〈E〉2, where 〈E〉 corresponds to the av-

erage over Monte Carlo sweeps of the internal energy E
and

〈
E2

〉
to that of its square, and where kB is the Boltz-

mann constant. In case of BZT, qEA is found to increase
with decreasing temperature, thereby indicating the de-

velopment of local correlations and the establishment of
a glassy order upon cooling, in concordance with the ex-
perimentally reported dipolar glass character of BZT [53],
for which no macroscopic order parameter (e.g., sponta-
neous polarization) exists down to the lowest tempera-
ture. On the other hand, the lower panel of Fig. 2 shows
that PSN becomes ferroelectric and thus loses its relaxor
behavior below a certain finite temperature since its spe-
cific heat exhibits a noticeable peak (the temperature at
which C peaks is known to be the Curie temperature,
TC). The corresponding results reveal that TC ∼ 360 K,
while the maximum of the static dielectric response χ oc-
curs at a higher temperature Tm ∼ 380 K in PSN, both
in good agreement with experimental values [8].

Figure 1(a) indicates that, in case of BZT, the density
ρ is found to decrease smoothly with decreasing tem-
perature, and is non zero over the entire temperature
range. Moreover the upper panel of Fig. 2 reveals that
the temperature at which this density of topological de-
fects inflects (that is, the temperature at which dρ/dT is
maximal) is ∼ 135 K in BZT, which is precisely the tem-
perature Tm at which its dielectric response χ peaks [10].
The lower panel of Fig. 2 confirms the identity between
the inflection of ρ and the Tm temperature at which χ is
maximal in PSN (which is about 380 K in this system,
that is about 20K larger than its Curie temperature).
These observations in both BZT and PSN therefore en-
able the interpretation of the defects density inflection
point as the temperature at which the dielectric anomaly
occurs in relaxor ferroelectrics. The connection between
topological defects and relaxor properties takes its root
into the fact that, as shown in Fig. 1(c), the spatial dis-
tribution of defects is such that they are mostly posi-
tioned at the contact points between rugged interfaces of
differently ordered polar nanoregions (numerically iden-
tified using the procedure of Ref. [54]), that is at the bor-
der of the objects believed to be responsible for relaxor
behavior [2], where local distortions of the polarization
vector field are at their utmost. For instance, we find
that for PSN at 430 K the fraction of the topological
defects that reside at the interfaces of polar nanoregions
is of ∼ 89%. Interestingly, such point topological de-
fects are inherently associated with elastic deformations
of cubic symmetry (as one can guess from Fig. 1(b) and
from the known coupling between local dipoles and local
strains) that may explain the experimentally reported
diffuse scattering anisotropy [55].

Figure 1(a) further shows that, in contrast with BZT,
ρ of PSN significantly drops around Tm, ultimately van-
ishing for lower temperatures. It is particularly striking
to realize that, in PSN, this Tm temperature coincides
with the intersection between the defects density ρ and
the percolation threshold pc (shown by the horizontal
dashed line in Fig. 1). More precisely, pc indicates the
site percolation threshold on a regular lattice with neigh-
borhood extending to the third-nearest neighbors [56],
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and corresponds to the critical probability above which a
cluster of topological defects spanning through the whole
system appears. This suggests that in the temperature
region where ρ > pc, the development of long-range order
is hindered by percolating clusters of topological defects,
while for ρ < pc, the density is such that long-range fer-
roelectric order is achievable. In this regard, ρ dually
provides information about the evolution of local order.
As a matter of fact, in both PSN and BZT, the gradual
lessening of hedgehogs and antihedgehogs with decreas-
ing temperature indicates the growth of polar regions.
On further cooling, in the case of canonical BZT, ρ re-
tains a value larger than pc thereby indicating the im-
peded expansion of polar regions. Persisting hedgehogs
and antihedgehogs prohibit the establishment of long-
range order at any finite temperature and the average
crystal symmetry remains cubic in BZT. In the case of
non-canonical PSN, on cooling below Tm, ρ drops be-
neath pc, thereby signaling that enhanced dipolar corre-
lations effectively cancel the influence of internal random
fields and induce long-range ferroelectric order. These
observations hence point to a topological-based criterion
for distinguishing between canonical and non-canonical
relaxor behaviors, via the crossing or not, respectively,
of pc by ρ. Note that we further tested this criterion of
the appearance of ferroelectricity when ρ equals pc on
a prototypical ferroelectric, Pb(Zr0.6Ti0.4)O3 (PZT) (see
supplemental material [38]).

Interestingly, since the total topological charge is con-
strained to be zero in systems with periodic boundaries
conditions, the decrease of ρ occurring upon cooling in
both BZT and PSN can only happen by annihilation
among defects of opposite topological charge, that is be-
tween hedgehogs (Q+) and antihedgehogs (Q−). It is
thus of interest to inquire into the dynamical nature of
topological singularities and their annihilation (note that
the supplemental material [38] provides a Monte Carlo
time autocorrelation analysis of defects spatial distribu-
tion). For that, we resort to an hydrodynamic descrip-
tion involving a two-species diffusion-annihilation pro-
cess, Q+ + Q− → ∅, with long-range forces [57, 58].
Therein, the account for conserved charge density fluctu-
ations and a power-law long-range interaction, usually of
Coulomb type, among charged particles lead to an attrac-
tion between annihilating partners and entail new mecha-
nism for slow dynamics [57, 58]. The annihilation behav-
ior for Coulombic system in two dimensions has been of
widespread interest because of its connection with XY -
model kinetics [59], in which vortices and antivortices
interact via (1/r) force and exhibit nontrivial dynamics.
Such processes have also been studied in liquid-crystal
physics, where the singularities of the smectic director
field appear as positive and negative vortices interacting
via a logarithmic potential due to elastic forces [60, 61].
In three dimensions, it is expected that, in presence of
Coulomb interaction, the relaxation time τ of such pro-

cesses is inversely proportional to the density ρ [57, 58].
Coming back to the dependence of ρ on temperature
(Fig. 1), we find that for T > T0, the density ρ of PSN can
be very well approximated by an exponential relation [62]
ρ0 + (ρ∞ − ρ0)exp[−w/(T − T0)], where T0 is found to
coincide with TC . Since the fitted values give ratios of
ρ∞ to ρ0 that is much greater than 1 (∼ 28), one thus
obtains a relaxation time associated with the annihila-
tion process between hedgehogs and antihedgehogs that
is given by τ ∝ (ρ∞−ρ0)−1exp[w/(T−T0)]. Remarkably,
this latter equation has precisely the analytical form of
the Vogel-Fulcher relaxation law that is a typical char-
acteristic of dipolar relaxation in relaxor ferroelectrics,
including PSN (Eq. 1). Notably, it was reported for PSN
that the ferroelectric phase transition coincides with the
freezing temperature Tf [63], thus enabling the identifica-
tion T0 ∼ Tf ∼ TC . We find that the parameter w enter-
ing the fit of ρ of PSN by ρ0+(ρ∞−ρ0)exp[−w/(T−T0)]
is ∼ 41 K (0.0035 eV), that is about one order of mag-
nitude lower than that reported for dipolar relaxation
measurements [8]. Moreover, in the case of BZT, the
density can be well fited by ρ∞exp[−w/T ], but only for
temperatures above ∼ 108 K, yielding instead an Ar-
rhenius law for τ rather than a Vogel-Fulcher relation.
Interestingly, a thermally activated Arrhenius relaxation
as well as a departure from it below a certain temper-
ature have already been pointed out for BZT for the
(low) frequency associated with the relaxation of elec-
tric dipoles [53, 64]. The parameter w appearing in the
fit of ρ by ρ∞exp[−w/T ] is about ∼ 38 K (0.0032 eV) in
BZT, which is, as in the case of PSN, also about one or-
der of magnitude lower than that associated with the re-
ported dipolar relaxation of BZT [64]. One can therefore
conclude that the annihilation process between hedge-
hogs and antihedgehogs follows the same type of law as
dipolar relaxation (namely, Vogel-Fulcher in PSN ver-
sus Arrhenius in BZT) but with activation energy being
smaller by one order of magnitude. The latter numeri-
cally obtained values of w are to be associated with the
lifetime of defects pairs fluctuations [31, 65] rather than
with the average energy barrier between different orienta-
tions of individual dipoles within polar nanoregions [11].
It is worth noting that topological defects have struc-
tures which are stable against small fluctuations of the
polarization vector field. Interestingly, this topological
stability can lead to important effects on the dynamics
of the system, preventing the rapid relaxation of such lo-
cal distortions and endowing defects with long lifetimes
and slow dynamics [66, 67].

Furthermore, from the point of view of topological de-
fects, the obtained Arrhenius relation for the tempera-
ture dependence of the relaxation time in BZT can be as-
cribed to screened interactions among topological defects.
Indeed, Figure 1(a) shows that, unlike PSN, BZT retains
a high defects density down to the lowest temperatures
(around 18 % of the volume of the supercell is defective),
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and the defect-mediated relaxation can be seen as effec-
tively involving non-interacting point singularities. For
T < 108 K, we find that continued loss of defects mobil-
ity, or conversely, increased memory effects (see supple-
mental material [38]) concomitantly occurs with a stag-
nation of their density (a plateau is reached by ρ of BZT,
Fig. 1(a)). Interestingly, the residual relaxation rate at
very low temperatures (see supplemental material [38])
hints to a large density of states for topological excita-
tions at the lowest energies, which is a signature of frus-
tration and glassiness [68].

In summary, adopting a topological approach for prob-
ing the relaxor behavior, we have identified the perco-
lation of topological disorder as a criterion for discern-
ing between canonical and non-canonical relaxor behav-
iors. We also found that the dielectric anomaly occurs
at the temperature at which the density of defects in-
flects. Moreover, resorting to a simple hydrodynamic de-
scription involving diffusion-annihilation process among
Coulombically interacting oppositely charged topological
defects, we found that the dynamics of defects relates
to that of relaxors within a defect-mediated relaxation
mechanism.
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of Arkansas.

[1] G. A. Smolenskii and A. I. Agranovskaya, Sov. Phys.
Solid State 1, 1429 (1960).

[2] G. A. Samara, Solid State Physics 56, 239 (2001).
[3] A. A. Bokov and Z. G. Ye, J. Mater. Sci. 41, 31 (2006).
[4] W. Kleeman, J. Adv. Dielectr. 02, 1241001 (2012).
[5] G. H. Haertling and C. E. Land, J. Am. Ceram. Soc. 54,

303 (1971); G. H. Haertling, Ferroelectrics 75, 25 (1987).
[6] G. Burns and F. H. Dacol, Phys. Rev. B 28, 2527 (1983).
[7] Y. H. Bing, A. A. Bokov, and Z. G. Ye, Current Applied

Physics 11, S14-S21 (2011).
[8] F. Chu, I. M. Reaney, and N. Setter, J. Appl. Phys. 77,

1671 (1995).
[9] C. Malibert, B. Dkhil, J. M. Kiat, D. Durand, J. F. Berar

and A. Spasojevic-de Bire, J. Phys.: Condens. Matter 9,
7485 (1997).

[10] T. Maiti, R. Gu, and A. S. Bhalla, J. Am. Ceram. Soc.
91, 1769 (2008).

[11] G. A. Samara, Ferroelectrics 117, 347 (1991), and refer-
ences therein.

[12] H. Vogel, Phys. Z. 22, 645 (1921).
[13] G. S. Fulcher, J. Am. Ceram. Soc. 8, 339 (1925).
[14] L. E. Cross, Ferroelectrics 76, 241 (1987).
[15] B. E. Vugmeister and H. Rabitz, Phys. Rev. B 57, 7581

(1998).
[16] V. Westphal, W. Kleemann, and M. D. Glinchuk, Phys.

Rev. Lett. 68, 847 (1992).
[17] R. Blinc, J. Dolinsek, A. Gregorovic, B. Zalar, C. Filipic,

Z. Kutnjak, A. Levstik, and R. Pirc, Phys. Rev. Lett. 83,
424 (1999); R. Pirc and R. Blinc, Phys. Rev. B 60, 13470
(1999).

[18] V. V. Kirillov and V. A. Isupov, Ferroelectrics 5, 3
(1973).

[19] V. A. Stephanovich, Eur. Phys. J. B 18, 17 (2000).
[20] A.P. Levanyuk and R. Blinc, Phys. Rev. Lett. 111,

097601 (2013).
[21] Y. Nahas and I. Kornev, EPL, 103, 37013 (2013).
[22] N. D. Mermin, Reviews of Modern Physics, 51, 591

(1979).
[23] J. Vannimenus, ”Topological Defects and Disordered Sys-

tems.” Polymers, Liquid Crystals, and Low-Dimensional
Solids. Springer US, (1985) 567

[24] B.G. Chen, G.P. Alexander, and R.D. Kamien, Proc.
Natl. Acad. Sci. U.S.A. 106, 15577 (2009).

[25] S. E. Rowley and G. G. Lonzarich, Nature Physics 10,
907908 (2014).

[26] T. W. B. Kibble, J. Phys. A9, 1387 (1976).
[27] W. H. Zurek, Nature 317, 505 (1985).
[28] W. H. Zurek, Phys. Rev. Lett. 102, 105702 (2009).
[29] G. Toth, C. Denniston, and J. M. Yeomans, Phys. Rev.

Lett. 88, 105504 (2002).
[30] S. Z. Lin, Nature Phys. 10, 970 (2014).
[31] M. H. Lau and C. Dasgupta, Phys. Rev. B 39, 7212

(1989).
[32] C. Holm and W. Janke, J. Phys. A 27,2553 (1994).
[33] J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181

(1973).
[34] B. I. Halperin and D. R. Nelson, Phys. Rev. Lett. 41,

121 (1978).
[35] A. R. Akbarzadeh, S. Prosandeev, E. J. Walter, A. Al-

Barakaty, and L. Bellaiche, Phys. Rev. Lett. 108, 257601
(2012).

[36] J. Iniguez and L. Bellaiche, Phys. Rev. B 73, 144109
(2006).

[37] R. Hemphill, L. Bellaiche, A. Garcia and D. Vanderbilt,
Appl. Phys. Lett. 77, 3642 (2000).

[38] See Supplemental Material [url], which includes Refs. [39-
46]

[39] W. Zhong, D. Vanderbilt, and K. M. Rabe, Phys. Rev.
Lett. 73, 1861 (1994)

[40] W. Zhong, D. Vanderbilt, and K. M. Rabe, Phys. Rev.
B 52, 6301-6312 (1995)

[41] L. Bellaiche and D. Vanderbilt, Phys. Rev. B 61, 7877
(2000)

[42] N. J. Ramer and A. M. Rappe, J. Phys. Chem. Solids
61, 315-320 (2000)

[43] L. Bellaiche, A. Garcia, and D. Vanderbilt, Ferroelectrics
266, 41 (2002)

[44] L. Bellaiche, A. Garcia, and D. Vanderbilt, Phys. Rev.
Lett. 84, 5427 (2000)

[45] H. E. A. Huitema and J. P. van der Eerden, J. Chem.
Phys. 110, 3267 (1999)

[46] B. Dkhil, P. Gemeiner, A. Al-Barakaty, L. Bellaiche,
E. Dulkin, E. Mojaev, and M. Roth, Phys. Rev. B 80,
064103 (2009)

[47] I. A. Kornev, L. Bellaiche, P.-E. Janolin, B. Dkhil, and
E. Suard, Phys. Rev. Lett. 97, 157601 (2006).

[48] O. I. Motrunich and A. Vishwanath, Phys. Rev. B 70,
075104 (2004).

[49] S. Sachdev and K. Park, Ann. Phys. (N.Y.) 298, 58
(2002).

[50] B. Berg and M. Luscher, Nucl. Phys. B 190, 412 (1981).



6

[51] A. Garcia and D.Vanderbilt, in First-Principles Calcula-
tions For Ferroelectrics: Fifth Williamsburg Workshop,
edited by R. E. Cohen (AIP, Woodbury, New York,
1998), p. 53.

[52] K. M. Rabe and E. Cokayne, in First-Principles Cal-
culations for Ferroelectrics: Fifth Williamsburg Work-
shop, edited by R. E. Cohen (AIP, Woodbury, New York,
1998), p. 61

[53] J. Petzelt, D. Nuzhnyy, M. Savinov, V. Bovtun, M.
Kempa, T. Ostapchuk, J. Hlinka, G. Canu, and V.
Buscaglia, Ferroelectrics, 469(1), 1425 (2014).

[54] Y. Nahas, Ph.D. thesis, Ecole Centrale Paris, 2013.
[55] R. G. Burkovsky, A. V. Filimonov, A. I. Rudskoy, K.

Hirota, M. Matsuura, and S. B. Vakhrushev, Phys. Rev.
B 85, 094108 (2012).

[56] L. Kurzawski and K. Malarz, Reports on mathematical
physics 70, 163 (2012).

[57] V. V. Ginzburg, P. D. Beale, and N. A. Clark, Phys. Rev.
E 52, 2583 (1995).

[58] V. V. Ginzburg, L. Radzihovsky, and N. A. Clark, Phys.
Rev. E 55, 395 (1997).

[59] R. Loft and T. A. DeGrand, Phys. Rev. B 35, 8528
(1987).

[60] R. Pindak, C. Y. Young, R. B. Meyer, and N. A. Clark,

Phys. Rev. Lett. 45, 1193 (1980).
[61] C. D. Muzny and N. A. Clark, Phys. Rev. Lett. 68, 804

(1992).
[62] N. D. Antunes, L. M. A. Bettencourt, and M. Kunz,

Phys. Rev. E 65, 066117 (2002).
[63] F. Chu, I. M. Reaney, and N. Setter, Ferroelectrics 151,

343 (1994).
[64] D. Wang, J. Hlinka, A. A. Bokov, Z. G. Ye, P. On-

drejkovic, J. Petzelt and L. Bellaiche, Nat. Commun. 5,
5100 (2014).

[65] J. Tobochnik and G.V. Chester, Phys. Rev. B 20, 3761
(1979).

[66] J. Vannimenus, Polymers, Liquid Crystals, and Low-
Dimensional Solids Physics of Solids and Liquids, pp 567-
616, Topological Defects and Disordered Systems (1984)
Springer

[67] A. P. Balachandran and S. Digal, Int. J. Mod. Phys. A17,
1149 (2002).

[68] S. R. Dunsiger, R. F. Kiefl, K. H. Chow, B. D. Gaulin,
M. J. P. Gingras, J. E. Greedan, A. Keren, K. Kojima,
G. M. Luke, W. A. MacFarlane, N. P. Raju, J. E. Sonier,
Y. J. Uemura, and W. D. Wu, Phys. Rev. B 54, 9019
(1996).


