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We theoretically investigate effects of quantum fluctuations on superfluid spin transport through
easy-plane quantum antiferromagnetic spin chains in the large-spin limit. Quantum fluctuations
result in the decaying spin supercurrent by unwinding the magnetic order parameter within the easy
plane, which is referred to as phase slips. We show that the topological term in the nonlinear sigma
model for the spin chains qualitatively differentiates decaying rate of the spin supercurrent between
integer and half-odd-integer spin chains. An experimental setup for a magnetoelectric circuit is
proposed, in which the dependence of the decaying rate on constituent spins can be verified by

measuring nonlocal magnetoresistance.

PACS numbers: 75.76.+j, 74.20.-z, 75.10.Pq, 74.40.-n

Introduction.—One-dimensional quantum magnetism
has been a natural hotbed to seek and study exotic
states that defy classical descriptions [1, 2]. A proto-
typical example showing importance of quantum effects
is provided by Heisenberg antiferromagnetic spin chains.
For isotropic spin-s chains, Haldane suggested in 1983 [3]
that integer-s chains have disordered ground states with
gapped excitations unlike half-odd-integer-s chains hav-
ing gapless excitations [4]. The existence of the gap has
been experimentally confirmed for s =1 [5].

By considering anisotropic antiferromagnetic spin
chains in the large-s limit, Affleck [6] was able to attribute
this distinction between integer and half-odd-integer spin
chains to the topological term in the O(3) nonlinear
sigma model that describes the dynamics of the local Néel
order parameter [3, 7, 8]. For sufficiently large s, easy-
plane spin-s chains are in the gapless XY phase, where
order-destroying excitations are vortices of the order pa-
rameter in the two-dimensional Euclidean spacetime. It
is the skyrmion charge @ of a vortex, quantifying how
many times the order parameter wraps the unit sphere,
that serves as the topological charge in the nonlinear
sigma model. Figure 1 illustrates vortices with minimum
nonzero skyrmion charges @ = £1/2, which are often
referred to as merons [9]. Only for half-odd-integer spin
chains, the topological term creates destructive interfer-
ence between vortices and, thereby, suppresses effects of
their quantum fluctuations [1, 10].

Superfluid spin transport, a spin analog of an electrical
supercurrent, has been proposed in magnets with easy-
plane anisotropy, where the direction of the local mag-
netic order within the easy plane plays the role of the
phase of a superfluid order parameter [11-14]. Spin su-
percurrent therein is sustained by a spiraling texture of
the magnetic order, being proportional to the gradient of
the in-plane components of the order parameter. Under
the guidance of established theories for resistance in su-
perconducting wires [15], we have recently investigated
intrinsic thermal dissipation in one-dimensional super-
fluid spin transport, which arises via thermally-activated
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FIG. 1. (color online) Vortex configurations of the local
Néel order parameter in the Euclidean spacetime (x,7) with
skyrmion charges (a) @ =1/2 and (b) Q = —1/2.

phase slips [16] (that unwind the phase by lifting the
magnetic order out of the easy plane [17]). At sufficiently
low temperatures, however, dissipation is mainly induced
by quantum fluctuations via quantum phase slips (QPS)
[18, 19]. The QPS in superconducting wires correspond
to vortices of the phase of the order parameter in the Eu-
clidean spacetime. Likewise, the QPS in one-dimensional
spin superfluidity correspond to vortices of the magnetic
order parameter. Then, there arises a natural question
regrading the role of the topological term for the integer-s
and half-odd-integer-s chains in the QPS-induced dissi-
pation of superfluid spin transport.

In this Letter, we theoretically study the QPS in su-
perfluid spin transport through easy-plane quantum an-
tiferromagnetic spin chains. For integer s, the topolog-
ical term is inoperative, and dissipation arises due to
the QPS of skyrmion charges Q@ = +1/2 that change
winding number by 27. For half-odd-integer s, these
QPS are completely suppressed due to destructive in-
terferences. Instead, the QPS of twice-larger skyrmion
charges, Q = +1, give rise to dissipation by unwinding
the phase by 4mw. See Fig. 2 for illustrations. Dissipa-
tion in superfluid spin transport can be characterized by
the spin-current decay rate, x(I,T), which depends on
the spin current I and the ambient temperature 7. One
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FIG. 2. (color online) Elementary vortices, which control the
winding number A¢, with skyrmion charges (a) Q = 1/2 and
(b) @ = 1. For half-odd-integer spin chains, 27 phase slips are
prohibited by destructive interference between vortices with
skyrmion charges @ = £1/2. See the main text for a detailed
discussion.

of our main findings is a qualitative difference between
the decay rates in integer-s and half-odd-integer-s spin
chains for large spin s > 1, which can be summarized as
k(I1,T) o< [max(I, T)]*** where

= {71’8 /2,
27s,
The exponent p parametrizes the strength of interaction
between the QPS, which is proportional to the square
of their skyrmion charges; p is thus four times larger
for half-odd-integer s than for integer s. These spin-
dependent transport exponents can be measured through
the voltage or temperature dependence of electrical resis-
tance of the magnetoelectric circuit in Ref. [20] (see Fig. 3
for its schematics), which we propose for probing super-
fluid spin transport, using a quasi-one-dimensional easy-
plane antiferromagnetic insulator, e.g., (CHs)4NMnCl;
(s =5/2) [21] as a spin transport channel.
Model—We consider an anisotropic Heisenberg anti-
ferromagnetic spin-s chain that can be described by the
Hamiltonian

for integer s

. 1
for half-odd-integer s S

H=7Y [Sn-Sut1—aSiSi, +b(S2)?% ()

with S2 = s(s+ 1), where small positive constants a < 1
and b < 1 parametrize the anisotropy. In the large-
s limit, neighboring spins are mostly antiparallel, S,, ~
—S,,+1 in the low-energy states, and the long-wavelength
dynamics of the chain can be understood in terms of
the slowly varying unit vector n &~ (Sa, — Sapt1)/2s
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FIG. 3. (color online) A change in electrical resistance |dp| of
the magnetoelectric circuit as a function of an applied volt-
age V on logarithmic scale. The circuit consists of a quasi
one-dimensional antiferromagnet (a 3D stack of parallel spin
chains) and two platinum layers. See the main text for a
detailed discussion.

parametrizing the direction of the local Néel order pa-
rameter. The dynamics of the field n follows the non-
linear sigma model [3, 6-8] with the Euclidean action
S =1i0Q + Sp (in units of &), where § = 27s is referred
to as the topological angle. Here,

hp

Q i/d:lc/ drn- (0;n X 0;n) (3)
47 0

is the skyrmion charge of n that measures how many
times n(xz,7) wraps the unit sphere as the space and
imaginary-time coordinates, « and 7, vary, and is thus
topological. The nontopological part of the action is
given by

1 hpe (0,n)? , n?
SO—Z—g/dx/O d(cr)[ = + (0zn) +F ,

(4)
where ¢ = 2Jsd/h serves as a speed of “light” for the
theory, d is the lattice constant, and A = d/\/2(a + b)
is a characteristic length scale (providing the ultraviolet
cutoff for our theory) governed by the anisotropy. Here,
g = 2/s is the dimensionless coupling constant, which
sets the quantum “temperature” governing the magni-
tude of quantum fluctuations [3].
The corresponding partition function is given by

Z:i/Dn@JﬁﬁfflﬁmmeQfsm. (5)

We consider the fields n that are periodic in the imagi-
nary time 7, n(z,7) = n(x, 7 + AB). The partition func-
tion Z is then a periodic function of the topological angle
f. For integer and half-odd-integer s, therefore, we can
effectively set = 0 and 6 = 7, respectively [1].

Spin superfluidity.—The classical action for n(z,t)
can be obtained from the above quantum action Sy by
Wick rotation, 7 + ¢t. Its invariance under spin ro-
tations about the z axis implies conservation of spin



angular momentum (polarized along the z axis) and
leads us to parametrize n in spherical coordinates,
and ¢, defined by n = (sin cos¢,sin1)sin ¢, cos)).
The density and current of spin angular momentum,
p = (h?/4Jd)sin® ¥0,¢ and I = —Js%dsin? 10, ¢, sat-
isfy the continuity equation [11, 22]:

op+8,1=0. (6)

Time-independent stable solutions to the classical equa-
tions of motion (which includes the above continuity
equation) are given by

(x)=m/2, olx)=¢o+ke (Kl <XY), (7)
with ¢o an arbitrary reference angle [11]. The spin cur-
rent, I = —.Js%kd, is sustained by a spiraling texture

of n within the easy plane, which we identity as the
spin supercurrent by the analogy to the electrical su-
percurrent maintained by a gradient of the phase of the
superconducting order parameter. The ultraviolet cut-
off A7! sets a critical current for stable superfluid spin
transport. When the chain is long enough, L > A,
which we assume henceforth, actual boundary conditions
at the ends of the chain are not important. Imposing
periodic boundary conditions on the order parameter,
n(z =0,7) = n(x = L, 7), quantizes allowed spin super-
current, k, = 2wv/L, where v = A¢/27 is the winding
number of n in the easy plane.

QPS in spin superfluidity—The spin supercurrent in
a closed chain can be indefinitely maintained if there are
no fluctuations. Finite dissipation, however, arises due to
thermal and quantum fluctuations, which provide transi-
tion channels between steady states with different wind-
ing numbers v # v/ [17]. Such events changing winding
numbers are referred to as phase slips. In this Letter,
we are interested in the QPS, which dominate over the
thermally-activated phase slips at sufficiently low tem-
peratures.

The QPS are vortex configurations of n in the two-
dimensional Euclidean spacetime [15]. For a single vortex
centered at the origin, which is a saddle point of the
action Sy, the azimuthal angle is given by

¢q(x, T) = ¢o + garctan(cr/x), (8)

where nonzero integer ¢ is the vortex vorticity. The polar
angle is given by a function ¢ (r) of the radial distance
r = Va? + 272, which solves d?v/dr? + (1/r)dy/dr =
—siny cosp(1/A% — ¢%/r?) with boundary conditions
P(0) = (1 — p)r/2 and YP(r — oo0) = w/2 [23]. The
order parameter n is substantially out of the easy plane
only within the vortex core r < A. At the vortex center,
the order parameter points either toward the north pole,
p = +1, or the south pole, p = —1, which is referred to
as the vortex polarity. Vortex vorticity ¢ and polarity p
govern the skyrmion charge @ = pq/2 [24]. See Fig. 1 for
illustrations of vortices with @ = £1/2.

Let us now consider a dilute gas of n QPS in the back-
ground of a low spin current k < A~! [25]. The gas of
the QPS must be vorticity-neutral ) . ¢; = 0 to meet
the periodic boundary conditions. Substituting a saddle-
point solution, ¢ = kx + >, ¢4, (x — x;, 7 — 7;) and the
corresponding ¢ (z, 7; {p; }), into the action, we find

S=1i0 pigi/2+ So, (9)

So =D Seore(ai) = (27/9) 3 aig; n(di/A)

i<j

+(27/g)ck Z @G (10)

where d;; = /(z; —x;)2 + (1, — 7;)2 > A is the dis-
tance between the QPS [26]. The nontopological part
of the action Sy consists of three terms. The first term
is the contribution from the vortex cores to the action,
which can be estimated as Score ~ 7/g (increasing with
q). The second term is logarithmic interaction between
the QPS. The third term couples the QPS to the spin
current o< k.

The topological term i6 ). p;q;/2 depends on polari-
ties {p;} of the QPS, whereas the nontoplogical term Sy
does not. For fixed vorticity configuration {¢;}, the par-
tition function is summed over two possible polarities for
each QPS, p; = £1, which results in

Hcos (92%)] e~So(fail) (11)

As pointed out by Affleck [6], the prefactor of the par-
tition function distinguishes integer and half-odd-integer
s. For integer s, the topological angle is zero 8 = 0,
and thus the prefactor is 1. Half-odd-integer s, however,
yields @ = 7, and the prefactor vanishes when any of vor-
ticities {g¢;} is odd. This destructive interference between
the QPS with odd vorticities can be effectively captured
by setting an elementary vorticity of the QPS to 2. Let
us use the symbol gy to denote an elementary vorticity;
go = 1 and g9 = 2 for integer and half-odd-integer s, re-
spectively. Low-energy dynamics of the order parameter
will be dominated by the QPS with the elementary vor-
ticity. We therefore focus on a gas of such QPS, which is
described by the effective action:

Seﬁ = nS’CMe — 2/.L Z dlqj ln(d”/)\) + g Z (jiTi s (].2)

1<j %

Z x

where u = m¢3/g [Eq. (1)] is the interaction strength
between the effective QPS, o = 2mqock/g is the rescaled
spin current, and §; = ¢;/qo = %1 is the elementary
vorticity sign. The effective action Seg without the last
term has been invoked when studying the phase diagram
of spin chains, e.g, in Ref. [1].

Analogy to superconducting wires.—Owing to the for-
mal equivalence of the action Seg to the action for a gas



of the QPS in a superconducting wire, specifically Eq. (4)
in Ref. [19], we can adopt the results for superconductiv-
ity to our case of spin superfluidity. First of all, there is
a superfluid-to-insulator phase transition at the critical
interaction strength p* in the absence of the spin current,
o = 0. For u > p*, the QPS of opposite vorticity attract
strongly and form bound pairs, keeping spin superfluid-
ity intact. As p decreases below p*, the QPS proliferate
and destroy spin superfluidity, driving the system to the
insulating phase. These insulating and superfluid phases
are, respectively, the gapped Haldane and the gapless XY
phases of anisotropic spin chains [1]. The condition for
being in the superfluid phase is p > p* = 2 [19, 27],
which corresponds to s > 2 and s > 1/2 for integer and
half-odd-integer s, respectively [28].

Secondly, the QPS rates have been derived for a su-
perconducting wire in Ref. [19] by following the Langer’s
theory for the decay of metastable states [29]. By adopt-
ing the results to the case of spin superfluidity, we can
find the average decay rate (I, T) of the winding num-
ber, v = —kv, as a function of the spin current I and
the ambient temperature T in the deep superfluid regime
n>1:

K(I,T) = 22wo(T/hwo)** 2 F(I)T),
F(€) = Csinh(£/2) [T(p — 1/2 + i /2m)|* |

where 2z = exp(—Score) is the fugacity of the QPS, wy =
¢/ is the characteristic frequency of the spin chain (fiwg
is the gap of the out-of-easy-plane spin wave branch [30]),
and C' = 873/2(27m)2# 2T (u — 1/2)/T(u)I'(2p — 1) is a
numerical constant [31]. The expression for x(I,T) can
be simplified as [32, 33]

zQwO(T/hwo)gﬂ_?’ R
ZQWO(I/E,OJ())QP’_?’ R

for I T
for T <1’

k(I,T) x { (14)

To see such quantum effects, we should work at suf-
ficiently low temperatures, where quantum fluctuations
dominate over thermal fluctuations. The crossover tem-
perature T* can be estimated by matching the classical
phase-slip energy barrier (divided by T') [17] to the ac-
tion of two noninteracting QPS [19], 2fic/\T* ~ 2Score-
Using Score ~ 7/g yields T* ~ 2fic/ms.

Ezxperimental proposal.—The supercurrent decay rate
can be experimentally inferred by measuring electrical
resistance of the magnetoelectric circuit that has been
proposed for probing superfluid spin transport [20]. The
circuit consists of a quasi one-dimensional easy-plane
antiferromagnet and two parallel-connected metals with
strong spin-orbit coupling (e.g., platinum) sandwiching
it. See Fig. 3 for schematics of the setup. With charge
current flowing, two interfaces of the antiferromagnet to
the metals act as a spin source and drain for spin trans-
port via spin-transfer torque and spin pumping [34]. The
spin supercurrent is sustained by a spiraling texture of

the local order parameter within the easy plane. The
QPS disturb the texture and unwind it by 27 for inte-
ger s and 47 for half-odd-integer s, with the frequency
k. This unwinding of the phase propagates to the ends
of spin chains and induce dynamics of spins at the in-
terfaces. Via spin pumping, spin rotations generate an
electromotive force on electrons in the metals, which de-
creases the effective resistance of the circuit.

Following derivations of Refs. [17, 20], we can calcu-
late the change of the effective resistance: p — p + dp,
where 0p = —9?k(I, T)LA/2Jsd (treating the QPS as a
perturbation to uniform spin-current states). Here, I is
the spin current flowing through a single chain of cross
section A, p is the resistivity of the metal, and ¥ is re-
lated to the effective interfacial spin Hall angle © via
¥ = (h/2et) tan ©, with —e being the electric charge of
a single electron and ¢ being the thickness of the metals
in the direction perpendicular to the interface. Figure 3
schematically depicts the resistance change dp as a func-
tion of a voltage V' on logarithmic scale at a fixed tem-
perature. Above the transition voltage V*, at which the
spin current is equal to the temperature I = T, In|dp|
increases linearly as In V' increases with the slope 2y — 3
that is determined by constituent spins. Below the tran-
sition voltage, §p converges to a constant value that is
determined by the ambient temperature.

For quantitative estimates, let us take the following
parameters for a quasi-one-dimensional antiferromagnet
(CH3)4NMnCl3 [21]: s =5/2, Js?> = 85 K, Js?(a+b) = 2
K, d = 3 nm, and the interchain distance d = 9 nm
(vielding A = d'? = 81 nm?). The associated contin-
uum parameters are A = 10 nm and ¢ = 3 x 10° m/s,
which yield the critical spin current I. = Js?d/\ = 18 K
and the crossover temperature 7% = 5 K. For geometry
of the materials, we consider the platinum metals with
thickness ¢ = 5 nm and the antiferromagnet with length
L =1 pm. Using © = 0.03 for the interfacial spin Hall
angle (measured for Pt|YIG interfaces [35]), the change
in the effective resistance is dp = —0.1 pf2 at the spin
current of I = I./10 and temperature T = 3 K.

Discussion—In certain spin chains, dimerization of
sites can occur at low temperatures, e.g., as a result of
the spin-Peierls transition [36]. The Hamiltonian then
acquires a new term that breaks the sublattice sym-
metry; H = H + aJ Y ,(—1)'S; - Si+1. The topologi-
cal term in the nonlinear sigma model changes as well:
0 = 27S(1 4+ «) [37]. With this change of 6, for half-
odd-integer s, a pair of the QPS with skyrmion charges
Q) = £1/2 contributes to the partition function with the
prefactor 4sin?(ra/2), which would change the elemen-
tary vorticity qg from 2 to 1.

The QPS occur not only in one-dimensional spin
chains, but also in two- and three-dimensional easy-plane
magnets. We have focused on spin chains in this Letter,
in which the effect of the QPS is strong enough to destroy
long-range magnetic order at zero temperature. Quan-



tum fluctuations are less important in higher-dimensional
systems. For example, the Heisenberg easy-plane an-
tiferromagnet on the square lattice orders at zero tem-
perature [38], which justifies the semiclassical mean-field
treatment of superfluid spin transport [14].

We would like to mention that QPS in topological su-
perconductors occur in multiples of 47 (instead of 27 in
conventional superconductors) [39] as in superfluid spin
transport through half-odd-integer spin chains.
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