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We consider quantum Hall states on a space with boundary, focusing on the aspects of the edge
physics which are completely determined by the symmetries of the problem. There are four distinct
terms of Chern-Simons type that appear in the low-energy effective action of the state. Two of these
protect gapless edge modes. They describe Hall conductance and, with some provisions, thermal
Hall conductance. The remaining two, including the Wen-Zee term, which contributes to the Hall
viscosity, do not protect gapless edge modes but are instead related to local boundary response fixed
by symmetries. We highlight some basic features of this response. It follows that the coefficient of
the Wen-Zee term can change across an interface without closing a gap or breaking a symmetry.

Introduction. Topology and geometry play an impor-
tant role in modern condensed matter physics. For exam-
ple, in quantum Hall systems, the observed quantization
and rigidity of the Hall conductance σH are most nat-
urally explained using topological arguments [1]. There
are several types of topology at play in this example. In
particular, the Hall conductance appears as the coeffi-
cient in front of a Chern-Simons (CS) term in the bulk
low-energy effective action Sbulk of the state [2],

Sbulk =
σH

2

∫

M

d3x ǫµνρAµ∂νAρ + . . . , (1)

where Aµ is an external electromagnetic gauge field and
M the three-dimensional space-time. Charge conserva-
tion then implies that σH cannot vary continuously in
space or time, and is quantized in a way that depends on
the electric charges of quasiparticles.
This CS term has another property: it is gauge-

invariant up to a boundary term, and so is invariant on a
closed spacetime, but not on a spacetime with a bound-
ary. This non-invariance cannot be cured by adding lo-
cal boundary terms built from Aµ and its derivatives.
Charge conservation together with the existence of the
CS term then imply that there is a gapless, non-gauge-
invariant edge theory which cancels the non-invariance
of the bulk. Namely, the quantum effective edge action
Sedge living on the spacetime boundary ∂M obeys

δΛSedge = −δΛSbulk = −σH

2

∫

∂M

d2xΛ ǫαβ∂αAβ , (2)

where Λ is the gauge transformation parameter and α, β

are boundary indices. This non-invariance of the edge
theory is known as an “anomaly,” and its cancellation
against the variation of a CS term is an example of
“anomaly inflow” [3]. The edge depends on the details
of the state, including boundary conditions, and is often
unknown, but it must possess the anomaly (2) and be
gapless so as to make up for the non-invariance of the
bulk at arbitrarily low energies.

There are other rigid transport coefficients in quan-
tum Hall states. These are encoded in the dimension-
less coefficients of CS terms in the low-energy action of
the state [4–11]. The most well-known of these is the
Hall viscosity [12] and it is related to the Wen-Zee (WZ)
term [4, 13], which we discuss below. This term is not in-
variant on a spacetime with boundary. One natural ques-
tion is: does the WZ term protect the existence of gapless
edge modes, or instead correspond to some boundary-
localized response?

The goal of this Letter is to answer this question. We
consider CS terms consistent with the symmetries of a
quantum Hall state, and deduce which correspond to
anomalies and which to local boundary terms. We show
that Wen-Zee terms belong to the latter category and do
not correspond to protected gapless edge states. Never-
theless, they still encode symmetry-protected boundary
response, which we discuss below. Our analysis only em-
ploys the symmetries of the problem as in e.g. [13–16],
and so is robust even when the microscopic system un-
derlying the Hall state is strongly interacting. Another
outcome of our analysis is that there are no anomalies
in addition to the ones that appear in the relativistic
setting.

The setup. We consider gapped systems in two spa-
tial dimensions with a conserved current jµ and spatial
stress tensor T ij , to which we respectively couple an ex-
ternal gauge field Aµ and spatial metric gij . We assume
that the underlying state is rotationally invariant in flat
space [17]. Due to the gap, the low-energy effective action
Sbulk only depends on the external fields (Aµ, gij) and can
be presented as an expansion in gradients thereof.

The total low-energy effective action Seff = Sedge +
Sbulk is invariant under all the symmetries of the underly-
ing theory, including gauge transformations under which
Aµ varies as δΛAµ = ∂µΛ. It is also invariant under spa-
tial reparameterizations of space xi = xi(yj), provided
that we equip the external fields (Aµ, gij) with the right
transformation properties. We will use these symmetries
to constrain the form of both bulk and boundary parts
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of the effective action.
One can extend the spatial reparameterization invari-

ance to a full space-time invariance by introducing a
frame βµ

a = (βµ
0 , E

µ
A) and coframe (β−1)bν = ((β−1)0ν , e

B
ν ),

which we have separated into temporal and spatial parts.
Here µ, ν are spacetime indices, a, b = 0, 1, 2 order the
basis, and A,B = 1, 2 label spatial vectors. (A frame
is just a local basis of tangent vectors.) We take the
“time vector” to be β

µ
0 = δ

µ
t and (β−1)0µ = δtµ. The

remaining spatial vectors EA with A = 1, 2 give a spa-
tial vielbein and the eAµ a spatial coframe. From the

eAµ we construct a spacetime covariant version of gij ,

given by gµν = δABe
A
µ e

B
ν , which is invariant under lo-

cal SO(2) rotations which rotate the eAµ into each other.
We use an SO(2) spin connection for this transformation,
ωµ = 1

2ǫ
A
BE

ν
ADµe

B
ν , which characterizes the geometry.

Here Dµ is a covariant derivative defined with a connec-
tion Γµ

νρ which we describe in the Supplement. Under
a local SO(2) rotation θ we have ωµ → ωµ + ∂µθ, and
in general there is nonzero torsion as determined by the
Cartan structural equations.
The spatial curvature is related to ω as follows. The

curvature constructed from ω is dω. On a constant-time,
or spatial, slice Σ with scalar curvature R we have

∫

Σ

dω =
1

2

∫

Σ

d2x
√
g R . (3)

The microscopic theory (and so also Seff ) is invari-
ant under (i.) U(1) gauge transformations, (ii.) coor-
dinate reparameterizations, and (iii.) local SO(2) rota-
tions. The CS terms [18] that can appear in Seff are
then [16], in terms of differential forms [19],

SCS =
ν

4π

∫

AdA+2s̄Adω+s2ωdω+
c

96π

∫

ICS [Γ] , (4)

where ICS[Γ] = Γµ
νdΓ

ν
µ + 2

3Γ
µ
νΓ

ν
ρΓ

ρ
µ . The second

term in (4) is the WZ term, the third is sometimes called
the second WZ term, and the last as the gravitational
Chern-Simons (gCS) term.
The dimensionless coefficients (ν, s̄, s2, c) are known as

the filling factor, mean orbital spin per particle, mean or-
bital spin squared per particle, and chiral central charge.
The flat-space Hall conductance is σH = ν

2π , and when
the space has curvature R, the Hall viscosity is then
ηH = s̄

2ρ+(12ν var(s)− c) R
96π , with ρ the charge density

and var(s) ≡ s2 − s̄2 the orbital spin variance [20] [21].
Quantities s̄ and 12ν var(s)−c can be used to distinguish
different quantum Hall states at the same filling fraction.
The third and fourth terms in (4) are related as

2ωdω + Ics[Γ] =
1

3
(βdβ−1)3 , (5)

where βµ
a is the frame. The integral of the RHS of Eq. (5)

over a closed space-time is proportional to an integer, a

“winding number” of the frame over M, so s2 and c

contribute to the bulk response only through the combi-
nation 12ν var(s) − c. This combination and (ν, s̄) have
been computed for integer quantum Hall states in [11, 22]
and for various model fractional quantum Hall states
in [20, 23–29].
When the space has a boundary, var(s) and c can be

disentangled. It has been conjectured that the thermal
Hall conductance of a quantum Hall state with an edge
is given by κH = cπ3 kBT [6]. A similar relation has
been shown to hold in any two-dimensional relativistic
theory [30].Thus measuring κH would determine c, and
var(s) could be deduced from the Hall viscosity.
Boundary terms and anomalies. The CS terms in (4)

are no longer invariant when M has boundary, leaving
two possibilities for each CS term: (i) it cannot be made
invariant by adding local boundary terms built from the
external fields, or (ii.) it can. In the first case, we say
that the CS term corresponds to an anomaly of a gap-
less edge theory, that cancels the non-invariance of the
bulk CS term. In the second case, the CS term does not
correspond to an anomaly, and so does not protect the
existence of gapless edge modes.
Electromagnetic CS term (the first term in (4)) belongs

to type (i.). Similarly, in relativistic field theories the gCS
term is known to correspond to a boundary diffeomor-
phism anomaly [31]. This holds true in non-relativistic
setup as well. This leaves the WZ terms.
To proceed, we describe the spacetime boundary ∂M

via embedding functions Xµ = Xµ(σα) where µ = 0, 1, 2
and (σ0, σ1) are boundary coordinates. The partial
derivatives ∂αX

µ are tensors under both reparameteri-
zations of the xµ and the σα. Using the ∂αX

µ and the
bulk data (βµ

a , ωµ), we can define the extrinsic curvature
of the boundary [32].
To illustrate the basic idea, consider the more famil-

iar case with a time-dependent spatial metric gij . We
consider spatial boundaries whose shape does not change
in time[33]. Such a boundary can be parameterized as
X0 = σ0, X i = X i(σ1). Given the X i one can construct
tangent and normal vectors ti and ni that satisfy

nini = titi = 1 , nit
i = 0 . (6)

From this data we can construct an extrinsic curvature
one-form Kα as

Kα = niDαt
i . (7)

The one-form Kα can be shown to be related to the spin
connection projected to the boundary as

ωα +Kα = ∂αϕ , (8)

for a locally defined function ϕ. That is, the extrinsic
curvature one-form differs from the spin connection (pro-
jected to the boundary) by an SO(2) gauge transforma-
tion with boundary value ϕ.
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Integrating over a spatial slice Σ and using Stokes’ the-
orem we obtain the Gauss-Bonnet theorem

1

2π

(
∫

Σ

dω +

∫

∂Σ

K

)

= χ , (9)

where χ is the Euler characteristic of Σ, which is also the
integer-valued winding number of ϕ around ∂Σ.

The crucial point now is that we can use the extrinsic
curvatureKα to render the WZ terms invariant by adding

SWZ,bdy =
ν

4π

∫

∂M

(

2s̄AK + s2ωK
)

, (10)

to the effective action. Equivalently, the contributions to
effective action

SWZ,1 ≡ νs̄

2π

(
∫

M

Adω +

∫

∂M

AK

)

, (11)

SWZ,2 ≡ νs2

4π

(
∫

M

ωdω +

∫

∂M

ωK

)

, (12)

are invariant with respect to all symmetries of the prob-
lem, do not correspond to edge anomalies, and do not
necessitate gapless edge modes [34]. This is the main
result of this Letter.

Putting the pieces together, we can write the total ef-
fective action as a sum

Seff = S′
CS + SWZ,1 + SWZ,2 + Sedge + . . . , (13)

where S′
CS contains the electromagnetic and gCS terms

and the dots refer to additional, invariant bulk terms
built from the external fields. The gapless edge theory
Sedge, varies under gauge transformations and infinitesi-
mal reparameterizations ξµ as

δSedge = − ν

4π

∫

∂M

ΛF − c

96π

∫

∂M

∂µξ
νdΓµ

ν . (14)

Lorentz and Galilean invariance. Here we comment
on the relation of this work to the literature. We regard
the boundary term (10) in a way which mirrors the situ-
ation in relativistic Hall states as discussed in [35]. The
Riemann curvature can be dualized to the topologically
conserved current Rµ = εµνρ∂νωρ. Rµ is the “Euler
current,” in that its density is proportional to the Eu-
ler density R on a spatial slice. The WZ term is just a
coupling of Aµ to this conserved current. On a closed
space, the “charge” associated with Rµ is just the Euler
characteristic of the spatial slice, and the conservation of
Rµ corresponds to the fact that this characteristic is a
topological invariant which does not vary in time. On
a space with boundary, the Euler characteristic includes
an extrinsic boundary term, and so charge conservation
mandates that the AµRµ coupling must be supplemented
with the extrinsic coupling in (11).

Response. The S′
CS and WZ terms (11), (12) lead to

certain response functions which are protected by the
symmetries as we now discuss.
Because Sedge is an a priori unknown, gapless theory,

we cannot completely fix the boundary response by the
symmetries alone. We proceed by defining correlators of
the U(1) current jµ, spin current sµ, “stress tensor” TA

µ ,
and what we call the displacement operator Dµ. These
are given by functional variations of Seff with respect
to (Aµ, ωµ, β

µ
A, X

µ) respectively [36]. The symmetries
imply that the displacement operator is along the normal
vector ni, and from it we find the external force density
F = niDi which is required to fix the boundary.
The U(1) current, spin current, and “stress tensor”

have bulk and boundary components. For example, keep-
ing (ωµ, β

µ
A) fixed, j

µ and Dµ are defined via

δSeff =

∫

M

[d3x] δAµj
µ
bulk (15)

+

∫

∂M

[d2σ]
(

δAµj
µ
bdy − δXµDµ

)

,

with [d3x] = d3x
√
g and [d2σ] respectively an invariant

bulk volume and boundary area. In other words, the
current density is given by

jµ = j
µ
bulk + j

µ
bdyδ(x

⊥) , (16)

with δ(x⊥) a delta function with support on ∂M [37]
All low-energy response functions of these operators

are contained in Seff . For illustrative purposes, we fo-
cus on the total charge Q, and the contribution of the WZ
terms (11), (12) to the total spin S and force density F ex-
erted on the boundary. We consider a time-independent
state in which the space is curved and threaded with
magnetic flux.
The total charge is Q =

∫

Σ
d2x

√
g j0, with Σ a spatial

slice. From Seff we find from (13)

Q =
ν

2π

∫

Σ

F +
νs̄

2π

(
∫

Σ

dω +

∫

∂Σ

K

)

+ Qedge

=νNΦ + νs̄χ+ Qedge ,

(17)

where NΦ and χ are the magnetic flux through and Euler
characteristic of Σ, and Qedge is the total charge coming
from the edge theory [38]. Here we have used that the
local, gauge-invariant terms in the ellipsis of (13) do not
contribute to the total charge.
On a closed space, (17) becomes Q = νNΦ+

νs̄
2π

∫

Σ
dω =

νNΦ + νs̄χ. This expression was already known in the
FQH literature [4, 39]. Eq. (17) generalizes it to systems
with an edge. The effect of the boundary term (10) is to
ensure that there is an extrinsic contribution to Q in such
a way that the total charge depends on s̄ only through
the Euler characteristic χ of the spatial slice.
The total spin S =

∫

Σ d2x
√
g s0 is

S = νs̄NΦ + νs2χ+ . . . . (18)
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The dots indicate contributions from the rest of Seff ,
including the gCS term. A similar relation has ap-
peared in [40] when space-time is compact. The bound-
ary term (10) gives an extrinsic contribution to S, ensur-
ing that it depends on s2 only through χ.

Finally, the external force density F = niDi as

F = − νs̄

2π

(

ti∂iE|| +KE⊥

)

− νs2

4π

(

ti∂iE|| +KE⊥
)

+ . . . ,

(19)
where again the dots indicate contributions from the rest
of Seff . Here E|| and E⊥ the electric fields parallel and
normal to the boundary (and similarly for the compo-
nents of “gravi-electric” field Ei = ∂0ωi − ∂iω0), and
K = tiKi the geodesic curvature of the boundary.

Relation to index theorem. There is an intimate con-
nection between quantum anomalies in relativistic field
theory and index theorems [41]. It is natural to ask
if there is any connection between Hall states and in-
dex theorems for manifolds with boundary. Here we il-
lustrate such a connection in the simplest case of non-
interacting electrons. Namely, we assume that we have Q
non-interacting electrons and (i) only the lowest Landau
level (LLL) is filled and (ii) we apply particular boundary
conditions for the bulk electrons. In this system, ν = 1
and s̄ = 1

2 , and the LLL states are zero modes of the
anti-holomorphic differential operator of momentum D̄

on the spatial slice. The number of such zero modes is
counted by the Atiyah-Patodi-Singer (APS) index theo-
rem [42] provided that the electrons obey so-called APS
boundary conditions. The index of D̄ is

ind(D̄) = NΦ +
1

2
χ+

1

2
η , (20)

where NΦ and χ are as above, the “η-invariant” is

η ≡ sign D̄|∂Σ =
∑

signλ , (21)

where D̄|∂Σ is D̄ restricted to the boundary, and the sum
runs over eigenmodes of this operator with eigenvalue
λ [43]. Note that the index (20) indeed matches our
general expression (17) for ν = 1, s̄ = 1

2 , and Qedge =
η
2 .

The total number of electrons Q is integer, which is
guaranteed in (20) by the η-invariant. For example, if the
spatial slice is a disk χ = 1, then η = 1 − 2{NΦ}, where
{NΦ} is the non-integer part of NΦ. Then ind(D̄) = Q =
⌊NΦ⌋+ 1, indeed giving integer Q.
Singular expansion of charge density. So far our re-

sults have been obtained only from the symmetries of the
problem. As an application, we derive the singular ex-
pansion of the charge density of a flat-space Hall state.
From Seff we obtain the charge density ρ = j0

ρ =
νB

2π
θ(Σ)+

( νs̄

2π
K + j0bdy

)

δ(∂Σ)+
ζ

2π
∂nδ(∂Σ)+ . . . .

(22)

Here ∂nδ(∂Σ) denotes the normal derivative of the delta
function on the boundary of the system. The first term
of (22) comes from (1), the second from the boundary
part of the first WZ term (11) and j0bdy (defined in (15))
depends on the non-universal details of Sedge. The third
comes from two invariant, higher order terms in Seff ,

σ
(2)
H

2π

∫

M

[d3x]BDiEi ,
ξ

2π

∫

∂M

[d2σ]niEi , (23)

with ζ = σ
(2)
H + ξ. Here σ

(2)
H is the O(k2) correction to

the Hall conductivity, and ξ is a dimensionless parameter
related to the total dipole moment at the edge. The
latter is an arbitrary parameter that changes the edge
dipole moment without affecting the (bulk) Hall viscosity.
The coefficient ζ is relevant for the so-called “overshoot”
phenomenon [44] and for the Laughlin function is related
to the Hall viscosity. When the underlying system is

Galilean-invariant, σ
(2)
H gets a contribution from the Hall

viscosity [13], thus relating the “overshoot” with ηH .
For simplicity we take Σ to be a flat disk of radius R.

Then (22) becomes

ρ =
νB

2π
Θ(R− r) +

(νs̄

π
+ 2Rj0bdy

)

δ(r2 −R2)

+
ζ

2π
R2δ′(r2 −R2) + . . . .

(24)

Specifying for Laughlin’s state with ν = 1
2n+1 and

νs̄ = 1
2 , this matches the singular expansion obtained by

Wiegmann and Zabrodin [45] directly from the Laugh-
lin’s wave function for ζ = 1− 2ν and j0bdy = − νs̄

2πR [46].
One can also match for an infinitesimally different defi-
nition of the radius R, in which case ζ is unchanged but
j0bdy = 0.
Conclusions. Using effective field theory and symme-

tries on a space with boundary, we have made a system-
atic study of the Chern-Simons terms (4) that appear in
the low-energy effective action of quantum Hall states.
The main result is that the WZ terms are not Chern-

Simons terms per se, but rather the couplings of Aµ and
the spin connection ωµ to a topologically conserved but
non-trivial “Euler current.” On a space with boundary,
these bulk couplings must be supplemented with bound-
ary couplings between Aµ and the spin connection ωµ to
the extrinsic curvature of the edge.
An immediate corollary to our result is that the coef-

ficients of the WZ terms, s̄ and s2, can jump across an
interface without closing a gap or breaking the symme-
tries of the problem, namely U(1) gauge invariance, co-
ordinate reparameterizations, or local SO(2) invariance.
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Note added: After this work was completed, the au-
thors of [47] have privately informed us that the results
of this Letter are consistent with theirs.
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