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We generalise the Schrieffer-Wolff transformation to periodically-driven systems using Floquet
theory. The method is applied to the periodically-driven, strongly-interacting Fermi-Hubbard model,
for which we identify two regimes resulting in different effective low-energy Hamiltonians. In the
non-resonant regime, we realize an interacting spin model coupled to a static gauge field with a non-
zero flux per plaquette. In the resonant regime, where the Hubbard interaction is a multiple of the
driving frequency, we derive an effective Hamiltonian featuring doublon association and dissociation
processes. The ground state of this Hamiltonian undergoes a phase transition between an ordered
phase and a gapless Luttinger liquid phase. One can tune the system between different phases by
changing the amplitude of the periodic drive.

The Schrieffer-Wolff transformation (SWT) [1–4] is a
generic procedure to derive effective low-energy Hamil-
tonians for strongly-correlated many-body systems. It
allows one to eliminate high-energy degrees of freedom
via a canonical transform. The SWT has proven useful
for studying systems with a hugely degenerate ground-
state manifold, such as the strongly-interacting limit of
the Fermi-Hubbard model (FHM) [2], without resorting
to conventional perturbation theory.

Treating interactions in such a non-perturbative way
is difficult in periodically-driven systems [5–10], which
have received unprecedented attention following the real-
isation of dynamical localisation [11–15], artificial gauge
fields [16–22], models with topological [23–28] and state-
dependent [29] bands, and spin-orbit coupling [30, 31]. In
this paper, we consider strongly-interacting periodically-
driven systems and show how the SWT can be extended
to derive effective static Hamiltonians of non-equilibrium
setups. The parameter space of such models, to which we
add the driving amplitude and frequency, opens up the
door to new regimes. We use this to propose realisations
of nontrivial Hamiltonians, including spin models in ar-
tificial gauge fields and the Fermi-Hubbard model with
enhanced doublon association and dissociation processes.

SWT from the High-Frequency Expansion—Intuitively,
the high-frequency expansion for periodically-driven sys-
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FIG. 1: Similarity between renormalisation of tunnelling,
an interference effect induced virtually by an off-resonant
drive (a), and Heisenberg interactions induced by virtual off-
resonant interaction processes (b).

tems (HFE) and the SWT share the same underlying
concept: they allow for the elimination of virtually-
populated high-energy states to provide a dressed low-
energy description, as illustrated in Fig. 1. For a sys-
tem driven off-resonantly (Fig. 1a), virtual absorption of
a photon renormalises tunnelling. Similarly, non-driven
fermions develop Heisenberg interactions via off-resonant
(virtual) tunnelling processes (Fig. 1b). In this paper we
combine the HFE and SWT into a single framework al-
lowing one to treat both resonantly and non-resonantly
driven systems on equal footing. Let us illustrate the con-
nection by deriving the SWT using the HFE. Consider
the non-driven FHM:

H = −J0

∑
〈ij〉,σ

c†iσcjσ + U
∑
j

nj↑nj↓, (1)

where J0 is the bare hopping and U is the fermion-
fermion interaction. We are interested in the strongly-
correlated regime J0 � U . Going to the rotating
frame |ψrot(t)〉 = V †(t)|ψ(t)〉 w.r.t. the operator V (t) =

exp
(
−iUt∑j nj↑nj↓

)
eliminates the energy U in favor

of fast oscillations. If idt|ψrot〉 = Hrot(t)|ψrot〉, then

Hrot(t) = −J0

∑
〈ij〉,σ

[
gijσ+

(
eiUth†ijσ+h.c.

)]
, (2)

h†ijσ = niσ̄c
†
iσcjσ(1− njσ̄),

gijσ = (1− niσ̄)c†iσcjσ(1− njσ̄) + niσ̄c
†
iσcjσnjσ̄,

where ↑̄ =↓ and vice-versa. The first term gijσ mod-
els the hopping of doublons and holons, while the sec-
ond term h†ijσ represents the creation and annihilation

of doublon-holon pairs. Since Hrot(t) is time-periodic
with frequency U , we can apply Floquet’s theorem [32].
Thus, the evolution of the system at integer multiples of
the driving period TU = 2π/U [i.e. stroboscopically] is
governed by the effective Floquet Hamiltonian Heff . If
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we write Hrot(t) =
∑
`H

rot
` ei`Ut, the HFE gives an oper-

ator expansion for Heff = Hrot
0 +

∑
`>0[Hrot

` , Hrot
−` ]/`U +

O(U−2) [33–38]. The zeroth-order term H
(0)
eff = Hrot

0 is
the period-averaged Hamiltonian [here the doublon-holon
hopping g], while the first-order term is proportional to

the commutator H
(1)
eff ∼ J2

0 [h†, h]/U , cf. Fig. 1b:

Heff ≈ −J0

∑
〈ij〉,σ

gijσ +
4J2

0

U

∑
〈ij〉

(
Si · Sj −

ninj
4

)
. (3)

This effective Hamiltonian is in precise agreement with
the one from the standard SWT [89]. At half-filling, dou-
blons and holons are suppressed in the ground state and
this reduces to the Heisenberg model. Away from half-
filling this Hamiltonian reduces to the t−J model [2, 39].

Using the HFE to perform the SWT offers a few advan-
tages: (i) the SW generator comes naturally out of the
calculation, (ii) one can systematically compute higher-
order corrections [33–38, 40], and (iii) the HFE allows for
obtaining not only the effective Hamiltonian but also the
kick operator, which keeps track of the mixing between
orbitals and describes the intra-period dynamics [34, 40].
This is important for identifying the fast timescale asso-
ciated with the large frequency U in dynamical measure-
ments [41], and expressing observables through creation
and annihilation operators dressed by orbital mixing [40].

Generalisation to Periodically-Driven Systems.—The
HFE allows us to extend the SWT to time-periodic
Hamiltonians. Related approaches have been used to
study non-interacting Floquet topological insulators [42]
and ultrafast dynamical control of the spin exchange cou-
pling [43] in fermionic Mott insulators [44]. Let us add
to the FHM an external periodic drive:

H(t)=−J0

∑
〈ij〉,σ

c†iσcjσ+U
∑
j

nj↑nj↓+
∑
jσ

fjσ(t)njσ. (4)

The driving protocol fjσ(t) with frequency Ω encom-
passes experimental tools such as mechanical shaking,
external electromagnetic fields, and time-periodic chemi-
cal potentials, relevant for the recent realisations of novel
Floquet Hamiltonians. In the following, we work in the
limit J0 � U,Ω and assume that the amplitude of the
periodic modulation also scales with Ω [40].

Since both the interaction strength U and the driv-
ing amplitude are large, we go to the rotating frame

w.r.t. V (t) = e−i[Ut
∑
j nj↑nj↓+

∑
j,σ Fjσ(t)njσ], where

Fjσ(t) =
∫ t
fjσ(t′)dt′. The drive induces phase shifts

to the hopping:

Hrot(t)=−J0

∑
〈ij〉,σ

[
eiδFijσ(t)gijσ+

(
ei[δFij,σ(t)+Ut]h†ijσ+h.c.

)]
where δFij,σ(t) = Fiσ(t)−Fjσ(t). Notice that now there
are two frequencies in the problem: U and Ω. Hence,
Hrot(t) is not strictly periodic in either. To circumvent

this difficulty, we choose a common frequency Ω0 by writ-
ing Ω = kΩ0 and U = lΩ0 where k and l are co-prime
integers. Then Hrot(t) becomes periodic with period
TΩ0

= 2π/Ω0, and we can proceed using the HFE. Alter-
natively, before going to the rotating frame, we could de-
compose the interaction strength as U = lΩ + δU , where
δU acts as a detuning, and can continue without includ-
ing the term proportional to δU in V (t).
Non-resonant Driving.— Let us first assume k, l � 1

such that resonance effects can be ignored. We begin

by Fourier-expanding the drive eiδFijσ(t) =
∑
`A

(`)
ijσe

i`Ωt.
If opposite spin species are driven out-of-phase, we

have A
(`)
ijσ̄ = (A

(−`)
ijσ )∗. Similarly, flipping the direc-

tion of the bond flips the sign of δF , so A
(`)
jiσ =

(A
(−`)
ijσ )∗. We now apply the generalised SWT with fre-

quency Ω0. At half-filling and for off-resonant driv-
ing double occupancies are suppressed, and the dom-

inant term in the effective Hamiltonian is H
(1)
eff =∑

`>0[Hrot
` , Hrot

−` ]/`Ω0. Two types of commutators oc-
cur in this sum: the first comes from terms that
have no oscillation with frequency U , giving commuta-

tors of the form:
[∑

ijσ A
(`)
ijσgijσ,

∑
i′j′σ′ A

(`)
i′j′σ′gi′j′σ′

]
;

all of these commutators vanish. The second type
are the same commutators relevant for the SWT:[∑

ijσ A
(`)
ijσh

†
ijσ,

∑
i′j′σ′ A

(−`)
i′j′σ′hj′i′σ′

]
, but note the pres-

ence of all higher-order harmonics induced by the drive.
These involve terms rotating with ei(U+`Ω)t, and thus will
be suppressed by a (U + `Ω)–denominator. The com-
mutators are explicitly done in the Supplemental mate-
rial [45], giving

H
(1)
eff =

∑
〈ij〉,`

J2
0

U+`Ω

(
α

(`)
ij S

+
i S
−
j +α

(`)∗
ij S−i S

+
j +2β

(`)
ij S

z
i S

z
j

)
,

where α
(`)
ij ≡ A

(`)
ij↑A

(−`)
ij↑ and β

(`)
ij ≡ |A

(`)
ij↑|2.

One can Floquet-engineer the Heisenberg model with
a uniform magnetic flux per plaquette Φ�, see Fig. 2.
To this end, we choose the spin-dependent driving proto-
col fj,σ(t) = σ [A cos (Ωt+ φj) + Ωm] (c.f. Fig. 2, inset),
where φj = φmn = Φ�(m + n), σ ∈ {↑, ↓} ≡ {1,−1},
and we denote the square-lattice position by rj = (m,n).
Such spin-sensitive drives are realised in experiments via
the Zeeman effect using a periodically-modulated [29]
and static [19, 20] magnetic-field gradients which couple
to atomic hyperfine states. For this protocol,

A
(`)
(m,n),(m,n+1)↑ ≡ A

(`)
y↑ = ei`φmnJ`(2ζΦ)

A
(`)
(m,n),(m+1,n)↑ ≡ A

(`)
x↑ = ei(`+1)φmnJ`+1(2ζΦ) ,

where J` is the Bessel function of the first kind, ζ =
A/Ω is the dimensionless driving strength, and ζΦ =
ζ sin(Φ�/2) is the flux-modified strength [90].

There are two physically interesting limits. For U � Ω
only ` = 0 survives and we get
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HU�Ω
eff =

∑
m,n

(
Jex,x

eff

[
Szm+1,nS

z
mn +

1

2

(
e2iφmnS+

m+1,nS
−
mn + h.c.

)]
+ Jex,y

eff

[
Szm,n+1S

z
mn +

1

2

(
S+
m,n+1S

−
mn + h.c.

)])
,

where J
ex,x/y
eff = 4

[
J0J1/0 (2ζΦ)

]2
/U . For Ω� U , we can set U + lΩ→ U and sum over l to obtain

HΩ�U
eff =

4J2
0

U

∑
m,n

[
Szm+1,nS

z
mn +

J2(4ζΦ)

2

(
e2iφmnS+

m+1,nS
−
mn + h.c.

)
+Szm,n+1S

z
mn +

J0(4ζΦ)

2

(
S+
m,n+1S

−
mn + h.c.

) ]
.

The exchange strengths depend on Ω and U , but both
limits give spin Hamiltonians with phases along x. This
phase physically appears on the flip-flop and not the Ising
term because the drive is spin-dependent. Thus a phase
difference only occurs if the electron virtually hops as one
spin and returns as the other.

Let us discuss the regime J0 � Ω � U a bit more.
This spin Hamiltonian can be identified with the Heisen-
berg model in the presence of an artificial gauge field with
flux Φ� per plaquette. Whenever the SzSz-interaction
is small, the Hamiltonian reduces to the fully-frustrated
XY model in 2D, in which one cannot choose a spin
configuration minimizing the spin-exchange energy for
all XY-couplings. In the classical limit, similarly to a
type-II superconductor, the minimal energy configura-
tion is known to be the Abrikosov vortex lattice [46, 47].
The realisation of the deep XY-regime with this par-
ticular driving protocol is limited, since |J2(4ζΦ)| < 1
but, at finite SzSz–interaction a semi-classical study
showed that vortices persist and can be thought of as
half-skyrmion configurations of the Neél field [48–50].
Another interesting feature of the spin Hamiltonian is
that it exhibits a Dzyaloshinskii-Moriya (DM) interaction
term [51–54], Dmn · (Sm+1,n × Smn). The DM coupling
is spatially-dependent, polarised along the z-direction
Dmn = sin(φmn)J2(4ζΦ)n̂z/2, and present only along
the x-lattice direction.

Finally, let us mention that spin-1/2 systems are
equivalent to hard-core bosons. In this respect, HU�Ω

eff

and HΩ�U
eff model hard-core bosons with strong nn-

interactions in the presence of a gauge field. For a
flux of Φ� = π/2 the non-interacting model has four
topological Hofstadter bands. If we then consider the
strongly-interacting model, and half-fill the lowest Hof-
stadter band (Sztot = −3Nsite/8), the Heisenberg model
supports a fractional quantum Hall ground state [25, 55–
57]. Away from half-filling of the fermions, doublon and
holon hopping terms appear in the effective Hamiltonian,
cf. Suppl. [45] and it would be interesting to study the
effect of such correlated hopping terms [58] on this topo-
logical phase.

Resonant Driving.—Novel physics arises in the
resonant-driving regime J0 � U = lΩ. To illustrate

FIG. 2: In the presence of a spin-dependent drive off-
resonant with the interaction strength U (inset), the stro-
boscopic physics of the strongly-driven, strongly-correlated
Fermi-Hubbard model is governed by an effective spin Hamil-
tonian in the presence of a gauge field.

this, we choose a one-dimensional system with the driv-
ing protocol fjσ(t) = jA cos Ωt, which was realised exper-
imentally by mechanical shaking [12, 12–14]. Unlike off-
resonant driving, resonance drastically alters the effective

Hamiltonian by enabling the lowest-order term H
(0)
eff : on

resonance, the doublon-holon (dh) creation/annihilation
terms h† survive the time-averaging, and the leading-
order effective Hamiltonian reads

H
(0)
eff =

∑
〈ij〉,σ

[
−Jeffgijσ −Keff

(
(−1)lηijh†ijσ + h.c.

)]
, (5)

where ηij = 1 for i > j, ηij = 0 for i < j, Jeff = J0J0(ζ),
and Keff = J0Jl(ζ). The first term, gijσ, is familiar from
the static SWT, with a renormalised coefficient Jeff. The
term proportional to h†ijσ appears only in the presence
of the resonant periodic drive and is the source of new
physics in this regime. By adjusting the drive strength,
one can tune Jeff and Keff to a range of values, includ-
ing zeroing out either one. Starting from a state with
unpaired spins, dh pairs are created via resonant absorp-
tion of drive photons. Hence, holons and doublons be-

come dynamical degrees of freedom governed by H
(0)
eff ,
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J U = lΩ

FIG. 3: Resonant driving of the Fermi-Hubbard model
enables doublon creation and dissociation processes (inset).
The many-body gap ∆ shows a phase transition from a gap-
less Luttinger liquid to gapped translation-invariance-broken
phase. The doublon/holon hopping and creation coefficients
Jeff and Keff are controlled by varying the driving amplitude.

with the Heisenberg model as a subleading correction.
The dh production rates and further properties of the
system have been investigated both experimentally and
theoretically [43, 59–69]. A DMFT study found that the
AC field can flip the band structure, switching the inter-
action from attractive to repulsive [70].

Such correlated hopping models have been proposed to
study high-Tc superconductivity [71–73]. To get an intu-
ition about the effect of the new terms, we use the ALPS
DMRG and MPS tools [74, 75] to calculate the ground

state of H
(0)
eff at half-filling. The many-body gap in the

thermodynamic limit ∆ is extracted from simulations of
even-length chains with open boundary conditions by ex-
trapolation in the system size: ∆(L) = const/L+∆. We
numerically confirm that the model features a transition
between a symmetry-broken ordered phase and a gap-
less Luttinger liquid phase [71–73] as follows [91]. For
Keff > Jeff , the physics is dominated by the dh cre-
ation/annihilation processes. In this regime, fermions
can hop along the lattice by forming and destroying dh
pairs. Thus, for l even the ground state exhibits bond-
wave order with order parameter Bj =

∑
σ c
†
j+1,σcjσ +

h.c., while the corresponding order parameter for l odd
is not yet known. This order breaks translation invari-
ance with a 2-site unit cell, and thus yields a many-body
gap for even-length chains with open boundary condi-
tions (cf. Fig. 3). For Keff < Jeff , renormalization group
arguments show that bond ordering terms become ir-
relevant, leading to a gapless Luttinger liquid [76]. At
Keff = Jeff and for l even, one surprisingly finds that
the system is equivalent to free fermions. The existence
of such a non-interacting point is rather striking, since
it means that a strongly-driven, strongly-interacting sys-
tem can effectively behave as if the fermions were free.

This phenomenon can be understood by noticing that
double occupancies, effectively forbidden in the absence
of the drive by strong interactions, are re-enabled by the
resonant driving term. As a result, whenever the ampli-
tude of the driving field matches a special value to give
Keff = Jeff, the matrix element for creation of doublons
and holes becomes equal to their hopping rate and the ef-
fect of the strong interaction is completely compensated
by the strong driving field. We emphasize that this is
a highly non-perturbative effect since it requires a large
drive amplitude A ∼ U = lΩ.

It bears mention that all regimes of the model are ac-
cessible using present-day cold atoms experiments [63].
We propose a loading sequence into the ground state of

H
(0)
eff in the Supplemental material [45]. Moreover, by

tuning the frequency away from resonance, one can write
U = δU + lΩ and go to the rotating frame w.r.t. the
lΩ-term, keeping a finite on-site interaction δU in the
effective Hamiltonian. This is required if one wants to
capture important photon-absorption avoided crossings
in the exact Floquet spectrum. Including artificial gauge
fields is also straightforward in higher dimensions, see
Suppl. [45] and expected to produce novel topological
phases. By utilizing resonance phenomena, this scheme
only requires shaking of the on-site potentials, which is
easier in practice than other schemes which have sug-
gested modulating the interaction strength to realize sim-
ilar Hamiltonians [77, 78].

Discussion/Outlook.—It becomes clear from the dis-
cussion above how to generalise the SWT to arbitrary
strongly-interacting periodically-driven models: First,
we identify the large energy scale denoted by λ (e.g.,
λ = U) and write the Hamiltonian as H = H0 + λH1 +
Hdrive(t). Second, we go to the rotating frame using the

transformation V (t) = exp
(
−iλtH1 − i

∫ t
Hdrive(t′)dt′

)
to get a new time-dependent Hamiltonian with frequen-
cies [92] λ and Ω: Hrot(t) = V †(t)H0V (t). Finally, de-
pending on whether we want to discuss resonant or non-
resonant coupling, we apply the HFE to obtain the ef-
fective Hamiltonian Heff order by order in λ−1 and Ω−1.
This procedure will generally work if a closed-form eval-
uation of Hrot(t) is feasible. For instance, H1 can be a
local Hamiltonian or can be written as a sum of local
commuting terms. The method also works if the interac-
tion strength is periodically modulated [77–79].

Although isolated interacting Floquet systems are gen-
erally expected to heat up to infinite temperature at
infinite time [5–9, 80], the physics of such systems at
experimentally-relevant timescales is well-captured by
the above effective Hamiltonians; indeed, it was re-
cently argued that typical heating rates at high fre-
quencies are suppressed exponentially [81–84], and long-
lived pre-thermal Floquet steady states have been pre-
dicted [82, 84–86]. In particular, rigorous mathemati-
cal proofs [82–84] supported by numerical studies [10]
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showed that the mistake in the dynamics due to the ap-
proximative character of the HFE is under control for the
large frequencies and the experimentally-relevant times
considered. Our work paves the way for studying such
strongly-driven, strongly-correlated systems. Both the
resonant and non-resonant regimes that we analyse for
the FHM yield systems directly relevant to the study
of high-temperature superconductivity. More generally,
we show that by using the generalised SWT, one can
Floquet-engineer additional knobs controlling the model
parameters of strongly-correlated systems, such as the
spin-exchange coupling. Our methods are readily exten-
sible to strongly-interacting bosonic systems, as well as
many other systems under active research.
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