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Phase space matching between two plasma-based accelerator (PBA) stages and between a PBA
and a traditional accelerator component is a critical issue for emittance preservation. The drastic
differences of the transverse focusing strengths as the beam propagates between stages and com-
ponents may lead to a catastrophic emittance growth even when there is a small energy spread.
We propose using the linear focusing forces from nonlinear wakes in longitudinally tailored plasma
density profiles to control phase space matching between sections with negligible emittance growth.
Several profiles are considered and theoretical analysis and particle-in-cell simulations show how
these structures may work in four different scenarios. Good agreement between theory and simula-
tion is obtained and it is found that the adiabatic approximation misses important physics even for
long profiles.

In the 20th century, particle accelerators have played
a very important role in the advancement of modern
physics [1]. Today accelerators such as the Large Hadron
Collider [2] and the Linac Coherent Light Source [3], are
pushing the frontiers of our knowledge about the origin
and complexity of matter. These machines are getting
too large and expensive, giving impetus to research on
advanced particle acceleration schemes that may lead to
a more compact and efficient alternatives to the present
technology [4]. One such approach, plasma-based accel-
eration, has been intensely studied and has made sig-
nificant recent progress towards both high-gradient and
high-efficiency acceleration [4–12]. However another im-
portant challenge in the development of plasma-based
accelerators (PBAs) that has only recently been dis-
cussed [13–16] and hitherto little explored [17, 18] is
to match the beam out of the plasma into another ac-
celerator component without spoiling the beam’s emit-
tance. Emittance preservation is imperative to maintain-
ing the beam’s brightness and luminosity for coherent
light source and collider applications [2, 3]. This is part
of the rapidly emerging area of basic physics research
on manipulating the six-dimensional phase space of high
energy density particle beams.

In this Letter, we show through both analytical solu-
tions as well as OSIRIS [19] particle-in-cell (PIC) simu-
lations that using plasmas that have longitudinally tai-
lored density profiles as matching sections it is possible
to transport the electron beam to/from the PBA sections
without significant emittance growth using ion chan-
nel focusing forces which arise in the nonlinear blowout
regime [20–22]. We investigate several density profiles,
how to match the Courant-Snyder (C-S) parameters β
and α [23] between the two stages that require beam
matching, and exact and adiabatic matching.

The use of tailored density profiles and linear wakes

to couple the particle beam into/from a PBA stage has
been previously suggested, but only in the adiabatic limit
[17, 18]. Our work greatly extends this work while also
revealing unexpected physics. We consider five profiles
with arbitrary length. We study the evolution of both β
and α, show that perfect matching can be obtained for
short sections (non-adiabatic profiles), and show that the
adiabatic approximation (for long profiles) misses impor-
tant physics. Furthermore, we consider nonlinear wakes
[21, 22] and not linear wakes because linear wakes have
nonlinear and axial dependent focusing forces and focus-
ing forces which are altered by beam loading [38] (de-
phasing would be an issue).

We consider four examples where it will be important
to achieve beam-matching between two stages where at
least one stage is a PBA. The first configuration is the
so-called injector-accelerator, where a ∼ 100 MeV class
electron beam produced by a short, high-density injector
stage is further accelerated to ∼ GeV level using a sec-
ond low-density accelerator stage [11, 24, 25]. The second
example is the external injection scheme where a high-
quality, relativistic electron bunch is first generated using
an RF accelerator and then injected into a PBA [26–30].
The third example concerns the proposed PBA driven
light source [31–33], where a high-quality electron beam
needs to be coupled from the plasma wake to an undula-
tor. The last configuration is for the recently developed
collider concepts based on linking together many PBAs
[34, 35]. Each stage (with a separate driver) provides
about 10 GeV gain. In the latter three cases a magnetic
focusing optic will be needed to couple the beam from
one stage into/from the PBA.

In the above scenarios, the beam exiting one stage
needs to be coupled into the next stage that may have
a drastically different field-focusing strength. In tradi-
tional accelerators, solenoids and quadrupoles are typ-
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ically combined to guide the transverse motion of the
particles between the stages. However, due to ultra-
high focusing gradient in the nonlinear plasma wake
(G[MT/m] ≡ Fr/ecr ≈ 3.01np[1017cm−3]), state of the
art quadrupoles (G ∼ 103 T/m) [36, 37] are not strong
enough to confine the transverse motion of the particles
between the stages. Here Fr is the transverse focusing
force in the direction r and np is the plasma density.
As a result, beams will experience orders of magnitude
transverse size variation when propagating between the
PA and the conventional focusing optic, and the parti-
cles’ transverse motion will become very sensitive to the
energy spread of the bunch, i.e., particles with different
energy will undergo transverse betatron oscillations with
different betatron phases, leading to a catastrophic emit-
tance growth [13–16].

The transverse normalized emittance, which is a fig-
ure of merit for the beam quality, is defined as εn =
1
mc

√
〈x2〉 〈p2x〉 − 〈xpx〉

2
, where 〈〉 represents an ensemble

average over the beam distribution, x is the transverse
position and px is the transverse momentum. The phase
space distribution is described by the C-S parameters
β, α and γ [23] where β =

〈
x2
〉
/ε, α = 〈xx′〉 /ε, γ =〈

x′2
〉
/ε, where x′ = dx/dz = px/pz is the slope of the

particle trajectory, ε =

√
〈x2〉 〈x′2〉 − 〈xx′〉2 is the geo-

metric emittance, β is a measure of the beam size, α rep-
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FIG. 1: (a) The emittance evolution of an electron beam
(〈γb,i〉 = 200) from a high density plasma injector as it prop-
agates in a low density plasma accelerator. The emittance
evolution for two different values of ∆Ez and Ez = 1, where
Ez is normalized by mcωp,acc/e and ωp,acc is the plasma fre-
quency in the accelerator. The inset shows the relative po-
sition of the bunch within the nonlinear accelerating cavity.
(b) The concept of matching using a longitudinally tailored
plasma profile. The beam to be accelerated in a PBA is fo-
cused at the entrance of a plasma density ramp for matching
and injected into a fully ”blow-out” wake produced by either
a laser pulse or an electron bunch (driver bunch).

resents the correlation between x and x′ (e.g., at beam
waist α = 0), and γ is a measure of the spread in the
particle slopes. The C-S parameters satisfy the relation-
ship βγ = 1 + α2. In typical cases, the C-S parame-
ters of a matched electron beam in the PBAs are deter-
mined by the field structure inside the nonlinear wake as
βp =

√
2 〈γb〉k−1p , αp = 0, where 〈γb〉 is the average value

of the relativistic factor of the beam.
It is straightforward to obtain the emittance evolu-

tion when a relativistic beam drifts in free space as

εn (z) = 〈pz〉 ε
√
σ̂2
γb

[
(γiz − αi)2 + 1

]
+ 1 [13][14], where

σ̂γb =

√
〈p2z〉 − 〈pz〉

2
/ 〈pz〉 is the relative energy spread

of the beam, and the geometric emittance ε remains con-
stant in free space. Here subscript ‘i’ refers to the input or
initial quantity. When the relativistic beam propagates
in focusing elements, the emittance evolution is deter-
mined by the detailed configurations of the quadrupoles
or the field structure in the plasma wake. For the simple
case where a linear focusing force Fr that is constant in
z is present, the emittance grows and finally saturates
when the beam is not matched and there is any initial
or induced energy spread. Now we consider the situation
shown in Fig. 1(a) where both Fr and accelerating field
Ez are present. Here an electron bunch of 〈γb,i〉 = 200
with an initial energy spread σ̂γb = 0.01 is produced in a
1019 cm−3 injector stage (βi = 33.7 µm, αi = 0). It then
propagates 0.5 mm in vacuum (βv ≈ 220βi, αv ≈ −15)
before entering a lower density (1017 cm−3) acceleration
stage with no attempt made to match the beam between
the two stages. Further energy spread is induced by
the acceleration gradient that varies uniformly between
[Ez −∆Ez/2, Ez + ∆Ez/2]. We solve the transverse mo-
tion equation numerically for many test particles to plot
the evolution of the emittance as solid line in Fig. 1(a)
for two different values of ∆Ez

. Catastrophic emittance
growth by more than a factor of 15 is seen.

It is also possible to obtain an analytical expression
for the projected emittance. Following the derivation in
Ref. [16] for cases where all particles are initialized at
the same zi leads to

εn = εn,sat

√
1− (γiβF + βi/βF )2 − 4

(γiβF + βi/βF )2

(
sin∆Φ

∆Φ

)2

(1)

where εn,sat ≈ εn,i (γiβF + βi/βF ) /2 [15] and βF =√
〈γb〉mc/Ge is the average beta function of the beam

within the focusing element. Here Φ is the electron be-
tatron phase advance and is assumed to be uniformly
distributed over ∆Φ. If the particles are not being ac-
celerated, Φ = z/

√
γbmc/Ge, while if the particles are

being accelerated then Φ = (
√

2γb −
√

2γb,i)/Ez and βF
in Eq. (1) corresponds to the value when the beam en-
ters the focusing element. The emittance growth from
Eq. (1) using the values for γ and β at the end of the
vacuum section as the initial values is plotted as dashed
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lines in Fig. 1(a) and excellent agreement with the nu-
merical results can be seen.

As seen from the above example, the emittance of the
beam will grow quickly as the beam propagates if it
has a finite energy spread and is not matched between
the focusing elements. However by using a plasma that
has a specific longitudinal density profile (matching sec-
tion) one can guide the beam through the two stages
with negligible emittance growth. The proposed density-
profile matches the initial βi of the bunch to the βgoal
of the PBA or the external focusing elements by provid-
ing a continuously varying focusing force to transport the
bunch from its waist (αi = 0) at the exit of the first stage
to another waist (αgoal = 0) at the end of the matching
section [see Fig. 1 (b)]. In all four cases mentioned ear-
lier, it is possible to match the beam from one stage into
another using this technique while preserving the beam
emittance.

Take density downramp as an example, we start with
the equation for the transverse motion of a single electron
in the blowout regime (linear focusing force) in the ramp,

d2x

dz2
+K(z)x = 0 (2)

where K(z) = np0f(z)e2/
(
2γbmc

2ε0
)

= f(z)β2
p0, np0

is the peak density at the beginning of the matching
plasma, and f(z) is the normalized plasma density pro-
file. We also assume that the beam is in a region
where there is negligible acceleration in the matching
section. We can normalize all the lengths to βp0, then
Eq. (2) can be expressed as d2x̂/dẑ2 + f(ẑ)x̂ = 0, where
x̂ = x/βp0, ẑ = z/βp0. We have found solutions to Eq.
(2) for the five different density profiles shown in Fig. 2.
As we will show, the profile with the best matching prop-
erties is f(ẑ) = 1/(1 + ẑ/l̂)2, so we analyze this case in

more detail. For this profile (when l̂ > 1/2) the solution
to Eq. (2) is,

x̂ = c1
√
ξcosΦ + c2

√
ξsinΦ (3)

x̂′ =
c1√
ξ

(
cosΦ

2
− ssinΦ

)
+

c2√
ξ

(
sinΦ

2
+ scosΦ

)
(4)

where ξ = ẑ + l̂, s =

√
l̂2 − 1/4, Φ = slnξ is the beta-

tron phase advance of the electron, and c1, c2 are con-
stants determined by the initial conditions for x̂ and x̂′.
Eqs. (3) and (4) can then be used to obtain the mapping(
x̂
x̂′

)
= M (ẑ|0)

(
x̂i
x̂′i

)
, which defines the transport ma-

trix. The elements of the transport matrix can be used to
express the C-S parameters at ẑ in terms of their initial
values [23]

β̂l̂(ẑ) = M2
11β̂i − 2M11M12αi +M2

12γ̂i (5)

αl̂(ẑ) = −M11M21β̂i + (M11M22 +M12M21)αi

−M12M22γ̂i (6)

A given matching section has a length zmax ≡ L̂. For
a selected L̂ the output β and α will depend on l̂. There
will be an optimum l̂ such that the emittance growth
is minimized within the target section which has a beta
function, βgoal. To obtain the optimum l̂ we minimize

εn,sat/εn,i =
[
γl̂(ẑ)βgoal + βl̂(ẑ)/βgoal

]
/2 for fixed ẑ = L̂,

and βgoal. Here subscript ‘goal’ refers to the final desired

quantity. We use Eqs. (5) and (6) to obtain β̂l̂(ẑ) and
α̂l̂(ẑ) for given initial C-S parameters.

Solutions to Eq. (2) can be found for the five pro-
files listed in Fig. 2(b) , e.g., by using mathematica [39].
These solutions can be used to find the appropriate trans-
port matrix for each case. In Fig. 2(a) we plot the evo-
lution of the β and α functions based on these transport
matrices for four of the five profiles with l̂ = 5 where the
adiabatic approximation should be reasonable. For the
exponential and [1 + ẑ/(2l̂)]−4 profiles the β-function de-
viates from the adiabatic solution for large ẑ. For other
profiles the β and α functions given by the adiabatic ap-
proximations are close to the average value of the ana-
lytical curves, but there is small oscillations about the
average. This oscillatory behavior can never be obtained
from the lowest order adiabatic approximation, and it is
critical for perfect matching. It is important to note that
because dβ/dz = −2α the results are less sensitive to L̂
when α is near zero. In Fig. 2(b) we present optimum
εn,sat/εn,i vs. L̂ for a particular βgoal, βi, and αi for each

of the five density profiles. The red (f(ẑ) = 1̂/(1+ ẑ/l̂)2)

and black (f(ẑ) = 1/(1 + 2ẑ/l̂)) curves are of particular

interest because for discrete values of L̂ an optimum l̂
can be found which provides exact matching conditions.
These are shown as squares and circles. Furthermore, the
red curve has nearly perfect matching for all L̂ > 10.

When matching from a positive phase space ellipse
(i.e., α = 0) to another positive phase space ellipse, for

the f(ẑ) = 1/(1 + ẑ/l̂)2 density profile, the parameters
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FIG. 2: The performance of the matching plasma with differ-
ent density profiles. (a) The evolution of the C-S parameters

when l̂ = 5. Thick/thin lines represent β/α-functions. The
colors correspond to the profiles listed in (b). Solid lines are
from the analytical solutions and the dashed lines are based
on adiabatic approximations where β̂ = f(z)−1/2. (b) For

each L̂, l̂ is scanned to find the optimized value. The param-
eters: β̂i = 1, αi = 0, β̂goal = 20, αgoal = 0; case of transition
from a PA to a magnetic optics.
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for exact matching can found analytically,

l = βp0

√[
(N + 1)π

lnβgoal/βi

]2
+

1

4
,
L

l
=

(
βgoal
βi
− 1

)
(7)

where N = 0, 1, 2, . . .. For the profile with f(ẑ) = 1/(1 +

2ẑ/l̂), it is difficult to give an analytical solution of the

parameters for exact matching, however for when l̂ �
1 we have found the fitting formulas give near perfect
matching

l ≈ (1.7 +N)βp0 (βgoal/βi)
−0.55

L

l
≈ [0.71 + (0.75 +N)πβp0/l]

2 − 1 (8)

We have considered cases where βgoal > βi so that
a density downramp is needed. We note that there is
symmetry between the upramp and downramp cases. For
the upramp case, βgoal/βi in Eqs. (7) and (8) should be
replaced with βi/βgoal.

Next, we verify that plasma matching sections can pro-
vide nearly perfect matching using fully self-consistent
PIC simulations using the code OSIRIS in 3D (or 2D)
Cartesian geometry using a moving window [19]. We
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FIG. 3: Schematic of staging (a) a high density plasma in-
jector (1019 cm−3) and a low density PA (1017 cm−3), (c)
an RF-based injector and a PA (1017 cm−3) using a mag-
netic optic, and (e) a PA (1017 cm−3) and an undulator
using a magnetic optic. In (b), (d), and (f) the evolution
of εn, β and α of the electron beam in the matching sec-
tion for scenarios (a), (c), and (e) respectively. For case
(b), the driver laser is focused at z = −0.04 mm , with
a0 = 4, w0 = 10 µm, τFWHM = 15 fs; at z = 0 mm the elec-
tron beam is initialized with σx,y = 0.17 µm, τFWHM = 5 fs,
and nb = 1020 cm−3; and between z = 0 mm and z = 0.44 mm
the beam parameters vary from 〈γb〉 = 200 to 192 and
σ̂γb = 0.1 to 0.105. For case (d), the driver laser is focused
at z = 0 mm , with a0 = 3, w0 = 58 µm, τFWHM = 100 fs;
at z = −4.8 mm the electron beam is initialized with σx =
10.9 µm, τFWHM = 25 fs, and nb = 1016 cm−3; and be-
tween z = −4.8 mm and z = 0 mm the beam parameters
vary from 〈γb〉 = 50 to 44.8 and σ̂γb = 0.02 to 0.0225. And
for case (f), the driver laser is focused at z = 0 mm , with
a0 = 3, w0 = 58 µm, τFWHM = 100 fs; at z = 0 mm the elec-
tron beam is initialized with σx = 0.34 µm, τFWHM = 25 fs,
and nb = 1018 cm−3; and between z = 0 mm and z = 13.9 mm
the beam parameters vary from 〈γb〉 = 4000 to 3966.6 and
σ̂γb = 0.05 to 0.0506.

consider the three examples schematically shown in Fig.
3(a), (c) and (e). In each case we use longitudinally tai-
lored plasma density structures with the ideal density
profile f(z) = 1/(1 + ẑ/l̂)2 to match the electron beam
between stages. We use a laser driver with λ0 = 800nm
and define the z-axis to be the propagating direction of
the drive laser and defined z = 0 at the peak of the den-
sity. The separation of the peak intensity of the laser
and density of the electron beam is ∼ 6c/ωp0 in each
case. Parameters specific to each simulation are given in
the figure caption.

First, we consider matching an electron beam from a
high density plasma injector into a low density PA as
shown in Fig. 3(a) - the case considered in Fig. 1(a) ex-
cept now the drift space is replaced by a matching plasma
section with final βgoal = 337 µm, αgoal = 0. The plasma
section has l ≈ 49 µm, L ≈ 440 µm, and N = 0. The 3D
simulation has a dimension of 180k−10 ×240k−10 ×240k−10

with 900× 1200× 1200 cells in the x, y and z directions
respectively, where k0 is the wavenumber of the driver
laser. As can be seen in Fig. 3(b), the matching section
aids in preserving the emittance of the electron bunch
at its initial level without appreciable growth as opposed
to the case shown in Fig. 1(a) and excellent agreement
between theory and simulation is found.

In the second case, we consider matching an electron
bunch (from an external accelerator) that is focused at
the beginning of the rising density matching section to
the PA [see Fig. 3 (c)]. We use 2D simulations with a
moving window of 1600k−10 × 3000k−10 with 8000× 1500
cells in the x and z directions respectively. The electron
beam with 〈γb〉 = 50, βi = 5 mm, αi = 0 needs to be
exactly matched to βgoal = 0.12 mm, αgoal = 0. We use
l ≈ 0.12 mm, L ≈ 4.8 mm, and N = 0. Once again
the initial beam emittance (1165 nm) is preserved as the
beam is transported to the PA and excellent agreement
between theory and simulation is found.

In the third case [Fig. 3 (e)] we consider coupling
the electron bunch from the PA via the matching sec-
tion into a conventional focusing optic so that it can be
injected into an undulator. We use 2D simulations with a
moving window of 1600k−10 × 3000k−10 with 8000× 3000
cells in the x and z directions respectively. We simu-
late matching an electron beam leaving a plasma with
〈γb〉 = 4000, βi = 1.06 mm, αi = 0 out of a matching
plasma (l ≈ 1.5 mm, L ≈ 14 mm, and N = 0) into a con-
ventional optic with βgoal = 10.6 mm, αgoal = 0. This
case is the reverse of the previous case where the match-
ing section aids in transporting a beam with an extremely
small β in the PA section to a much larger β needed to
inject the beam into the undulator section. In Fig. 3(f),
we see very good agreement between theory and simula-
tions and that the electron beam emittance is preserved.
Finally we note that matching of the beam between two
PA sections is essentially combining the cases shown in
Figs. 3 (c) and (e).
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In conclusion, we have provided a general formalism
for controlling the C-S parameters of an electron beam in
a PBA through the use of longitudinally tailored plasma
sections while operating in the nonlinear blowout regime.
The formalism applies for short or long sections where the
adiabatic approximation is reasonable.
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