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We show that for an anomalous fluid carrying dissipationless chiral magnetic and/or vortical
currents there is a frame in which a stationary obstacle experiences no drag, but energy and charge
currents do not vanish, resembling superfluidity. However, unlike ordinary superfluid flow, the
anomalous chiral currents can transport entropy in this frame. We show that the second law of
thermodynamics completely determines the amounts of these anomalous non-dissipative currents in
the “no-drag frame” as polynomials in temperature and chemical potential with known anomaly
coefficients. These general results are illustrated and confirmed by a calculation in the chiral kinetic
theory and quark-gluon plasma at high temperature.

Introduction — The collective dynamics of a chi-
ral (parity-violating) medium associated with quantum
anomalies has become a subject of much attention re-
cently. In particular, currents along the direction of an
external magnetic field (chiral magnetic effect, or CME)
discussed hypothetically earlier [1] have been recently
proposed in Ref. [2, 3] as a possible explanation of the
charge dependent correlations observed in heavy-ion col-
lisions and of negative magnetoresistance in a Dirac-
semimetal [4, 5. Currents in the direction of rotation
axis (chiral vortical effect, or CVE) also discussed in as-
trophysical context before [6] have been (re)discovered
in strong-coupling gauge-gravity calculations [7, 8]. The
generality of these effects and their connection to chiral
anomaly have been demonstrated in Ref. [9, 10] by apply-
ing the constraint of the second law of thermodynamics
to the hydrodynamic equations for the anomalous chiral
fluid.

One of the manifestations of the anomalous nature of
the CME and CVE currents is that these currents are
dissipationless and do not lead to entropy production,
in contrast, e.g., to the ordinary Ohmic current driven
by electric field, but similar to the persistent superfluid
currents. We wish to gain further understanding of the
non-dissipative nature of the anomalous transport.

How can one distinguish the anomalous CME/CVE
currents from the uniform (shearless) inertial motion of
the fluid as a whole in the same direction, which also
carries energy and charge without generating entropy?
To do this one needs to determine the “rest frame” of
the “normal” component of the flow. In the Landau’s
two-fluid picture [11] the superfluid component (the con-
densate) carries no entropy and one can define the rest
frame of the normal component as the frame where the
entropy flow vanishes. It is tempting to use the same
criterion in the case of the anomalous flows. We shall
show that, in general, this would not be correct, i.e., the
anomalous currents can carry entropy.

We propose that a natural way to define the “rest
frame” of the normal component is to insert an impu-
rity, or an obstacle, obstructing the flow as it is done,
e.g., in Ref. [12] for a gauge theory plasma with a heavy

quark. In general, the flow will exert force on the obsta-
cle and, if the obstacle is free to move, it will accelerate
until reaching a certain velocity at which the drag, and
thus acceleration, vanishes. One can say that the impu-
rity will then be carried by the flow defining the “no-drag
frame” — a natural (physically meaningful) rest frame of
the fluid.

We shall present a general and universal argument
based on the second law of thermodynamics allowing to
determine such a no-drag frame, and thus the magni-
tude of the energy, charge and entropy currents in it. Of
course, the magnitude of the drag force experienced by
an impurity depends on the properties of the impurity
itself and its interaction with the medium. However, the
velocity of the no-drag frame is completely determined
by the second law of thermodynamics and is insensitive
to the details of impurity-medium interactions, thus rep-
resenting the intrinsic property of the fluid itself.

For a normal fluid in equilibrium, the no-drag frame,
of course, is the Landau frame, and the flows of energy,
charge and entropy vanish in it. For a superfluid, the
no-drag frame is the frame where the normal component
rests, energy and charge are carried by the superfluid
component, and there is no entropy current. In contrast,
using the second law of thermodynamics we shall show
that the anomalous currents not only carry energy and
charge but, generally, also entropy in the no-drag frame.

Anomalous hydrodynamics with drag — Let us con-
sider a fluid flowing past a fixed point-like obstacle, or
impurity, for example, an infinitely heavy quark, or possi-
bly a lattice of such impurities, or a porous solid medium.
The hydrodynamic equations then contain an additional
term due to the momentum transfer between the impu-
rities and the fluid:

0,T" = F" ]\ — F” (1)

The local 4-momentum transfer from the fluid to the im-
purities, i.e., the drag force, per unit volume, F", de-
pends on the hydrodynamic variables and the 4-velocity
of the impurity. We shall show that this dependence is
constrained by the second law of thermodynamics up to
an overall non-negative coefficient.



To simplify the analysis we shall consider a single-flavor
anomalous fluid obeying

d,J" =CE-B (2)

where E# = FMuy, and B* = (1/2)e"*Pu,F,5 =

FFu,, as in Ref.[9]. The constitutive equations are given
by

T = wulu” 4+ pg"” + T
T = (épow” + ErpBM)u” + (1 < v), (3)
where w = ¢ + p, and

JP = nut + JH, Jt = Erowh +EpBY, (4)

where w” = (1/2)e"*Pu,d,us and €'s are the anoma-
lous transport (CME and CVE) coefficients. We do not
write the usual dissipative terms (viscosity and conduc-
tivity /diffusion) because their inclusion will not affect the
constraints on anomalous coefficients £ (this situation is
similar to Ref.[9]). In effect, we are considering an equi-
librium state of the fluid where all dissipative terms have
vanished, except, possibly, for the drag force on a test im-
purity. This allows us to focus on the novel conceptual
issues. Practical applications of our results will require
extensions of the analysis to (weakly) non-equilibrium
conditions, which we shall defer to further work.
The entropy current is given by

SH=suf 4+ 8% S =gt +EspBr. (5)

where s is the entropy density.

The 4-vector u* defines the local reference frame of the
fluid (the frame in which u* = (1,0)). The well-known
freedom of choice of this frame is used to optimize the
form of the equations. E.g., we can choose it to be the
frame in which 7% = 0 (Landau) or J* = 0 (Eckart) or
S? = 0 (entropy frame). These three choices coincide for
a normal fluid flow in equilibrium, as we discussed above,
but for the anomalous transport (CME or CVE) these
choices are different.

The freedom of choosing the local reference frame al-
lows us, starting from any choice, to redefine the velocity

by, e.g.,
ut — u! + aw” + apBY, (6)

where «,, and ap are arbitrary coefficients. Then the
anomalous transport coefficients in Egs. (3), (4) and (5)
would change accordingly:

Erw = ETw — Wa,; ére — {rB — waB; (7a)
§gw = Egw — N ¢ — &y — nap; (7b)
£Sw — £Sw — 503 s — &sp — sap; (7c)

One can, and we shall, use this freedom to go to a
frame which is most suitable for a given purpose — in our
case, the frame where drag vanishes.

The second law and the drag — Combining equa-
tions (1)—(5) with the first law de = T'ds + udn we can
calculate the divergence of the entropy current and use
the second law as a constraint [9, 10] to establish the
relations (invariant under (7)) between the coefficients:

Td¢se + pdé e, — dérw = Ky dp/w; (8)
Tdésp + pdé g — dérp = Kp dp/w; 9)

§w —2(T¢sp + p&sp — érB) = —Kun/w; (10)
&g —pC =—-Kpnjw, (11)

where we defined the following linear combinations:

K, =2T¢s0 421850 —38rw; Kp =TEésp+péip—28rp .

(12)
With that, the heat production rate is given by:
K, KgB
T(@-S)z(u—7w+ £ )-f (13)
w

Note that under transformations in Egs. (7)

K, = K, +wag; Kp — Kp +wag, (14)

which is also clear from Eqs. (6), (13) and the fact that
the entropy production should not depend on our choice
of local reference frame u*.

Although the discussion can be continued using arbi-
trary frame, we find it most convenient to fix the frame
now by conditions [13]

K,=Kg=0. (15)

With this choice, the only remaining nonzero term in
the r.h.s. of Eq.(13) is w - F. The requirement that it be
non-negative for an arbitrary fluid flow and heavy quark
4-velocity U fixes vector F up to an arbitrary, but non-
negative, coefficient, Ar > 0:

F* = Ap(u + U (u-U)) (16)

Both terms in Eq. (16) are needed because fluid cannot do
work on a static impurity and thus F° must vanish in the
frame defined by U, i.e., U - F = 0. One can also arrive
at this condition by considering the 4-momentum of a
heavy quark P* = MU" and requiring that the transfer
of the 4-momentum F* ~ dP*/dr does not violate the
mass-shell condition P - P = M?.

The second law of thermodynamics T'(0-S) =u-F =
Ar((u-U)?=1) > 0 only constrains the sign of Az, whose
magnitude could be a (local) function of hydrodynamic
variables €, n as well as v - U and coordinates.

Eq. (16) implies that F = 0 when U = u, i.e., if the
heavy quark (or impurity) is at rest in the reference frame
we chose. In other words, the frame where coefficients
obey Eq. (15) is the no-drag fame. When both velocities
are small U =~ (1,V) and u = (1,v), the drag force is
proportional to the relative velocity F ~ —Ax(V — v),



as one would expect, and the heat production rate is
u-F = Ar(V —v)2

Anomalous coefficients in the no-drag frame — Using
four algebraic equations (10), (11) and (12) together with
(15) we can express all coefficients in terms of g, and
¢sp. Integrating Eq. (9) then gives

§sp = XBT (17)

with an arbitrary constant Xp. Subsequent integration
of Eq. (8) gives

sw =2XpuT + X, T° (18)

with another arbitrary constant X,,.

Substituting Eqs. (17) and (18) back into the algebraic
equations we determine remaining four transport coeffi-
cients &:

€8 =Cp (19)

£jw = COp® + XpT? (20)
1 2 1 2

gTB = EO,M + §XBT (21)
2 2

Ery = §Cu3 +2Xpul? + ngT3 (22)

It is remarkable that in the no-drag frame anomalous
transport coefficients are polynomials in T and u [14].
The polynomial coefficients have been also found in calcu-
lations using Kubo formulas (see [15] and refs. therein),
in the calculations in Ref. [16], where the ansatz equiv-
alent to (15) was used to bypass equations of motion, in
kinetic theory calculations [17] and in holographic cal-
culations in Ref. [18], where the frame was defined by
horizon normal 4-vector. Despite the results suggesting
a special nature of the frame, the simple physical signif-
icance of it — being the no-drag frame — has not been
realized till now.

It has been also suspected that the special frame may
be characterized by vanishing entropy flow e.g., [12, 19],
in particular, based on the superfluid analogy [20]. This
is not true in general, as we shall now discuss.

Entropy flow — It is remarkable, but not unexpected,
that, even though the fluid carries energy flow, a static
heavy quark (impurity or obstacle) experiences no drag.
This reflects dissipationless, persistent nature of the
anomalous currents, similar to the superfluid currents.

For comparison, relativistic superfluid hydrodynamics
is described by constitutive equations with

Tov — ogyge, Jr = —gn, S =0, (23

where #* = 0¥ ¢+ A* and ¢ is the Goldstone field (phase)
obeying Josephson equation u - ¢ = p [21]. Using de =
Tds+ pdn~+v?ip-dip one can again show that T9-S = u-F,
i.e., superfluid flow does not contribute to drag.

Superfluid flow does not transport entropy (23). On
the other hand, the anomalous entropy flow in the no-
drag frame is proportional to Xp. When this coefficient
is zero, e.g., in Ref. [12], the entropy current is absent.
However, this property does not hold more generally, as
equations (17) and (18) show.

For a realistic magnetic field B, i.e., a dynamic field
in an anomaly-free gauge theory, the coefficient X g, pro-
portional to the mixed gauge-gravity anomaly [22, 23],
vanishes and so does the no-drag entropy flow, similar to
the superfluid. The notable difference is that the vanish-
ing of the no-drag entropy flow in the CME is tied to such
a profound property of quantum field theory as anomaly
cancellation. The no-drag entropy flow from the CVE
(18) can be nonzero, provided p is not linked to a dy-
namic gauge field and the corresponding Xp is nonzero
(e.g., for U(1)4 charge in QCD).

We can verify these general results and better un-
derstand the physics involved by using examples where
the hydrodynamic behavior is derivable from a micro-
scopic description. We shall consider two such examples:
CVE in Lorentz invariant chiral kinetic theory with col-
lisions [24] and CME in a chiral gauge plasma at high
temperature.

FEzxamples — The Lorentz invariant chiral kinetic equa-
tion is given by

0-j=C[f] (24)

where j# is the covariant phase-space particle number
current and C is the collision rate for a given distribution
function f (see Ref. [24] for details). A uniformly rotating
equilibrium solution to this equation can be written as
f=(e9 4+ 1)~ where [24, 25]

1
g= B’U, P + EQHVSHV - Bﬂq (25)

The property which ensures the detailed balance and van-
ishing of C[f] is that ¢ is a linear combination of quanti-
ties conserved in each collision: 4-momentum p#, angular
momentum S*” and particle number (charge) ¢, where
Buy, Qu and S are the coefficients [24, 25].

Let us now show that for the solution given by Eq. (25)
drag would be absent in the frame given by u*. To de-
scribe an impurity we need to add another term into the
kinetic equation describing collisions of the particles with
the impurity:

3'j:C—|—CU; CU:/ Cup (26)
AB
Cap=Wpoa—Wap (27)

Wasslf] = |M2(E,0)]* (27) 6(pa-U—pp-U) fA(l_{B)5
28



where the matrix element is a function of two indepen-
dent Lorentz invariants: the energy F =pa-U =pp - U,
and the scattering angle 0, or p4 - pp = E%(1 — cosf) in
the frame U. The distribution function f is also evalu-
ated in frame U. The collisions in Cy do not conserve
3-momentum, unlike those in C. However, collisions are
elastic and the energy is conserved in the frame U where
the impurity is at rest.

The drag force is given by the rate of momentum trans-
fer from the colliding particles to the impurity:

Fr = Cag (pa —pB)* (29)

AB

The energy conservation in Eq. (28) ensures that
U - F = 0. However, even for an equilibrium solution in
Eq. (25) with generic u* the 3-momentum transfer need
not vanish — the impurity will experience a drag, as ex-
pected. Correspondingly, the distribution function ob-
tained from Eq. (25) will not satisfy the detailed balance
condition Wp_, 4 = Wa_, g because such g is not a linear
combination of conserved quantities — the 3-momentum
in frame U is not conserved in Eq. (28). Thus the solu-
tion to the kinetic equation (24) given by Eq. (25) will
not solve the kinetic equation (26). In other words, the
impurity will disturb the flow.

However, when v = U, the component of momentum
appearing in Eq. (25) u-p = U -p (the energy in frame U)
is conserved according to Eq. (28). Thus detailed balance
will be satisfied when U = u, i.e., Cyp = 0. This then
ensures that Cy = 0, i.e., the distribution in Eq. (25)
with v = U is still an equilibrium solution, and that the
drag force in Eq. (29) vanishes even though particles do
scatter off impurity.

The CVE transport coefficients for the distribution in
Eq. (25) have been calculated in Ref.[24]:

ILLQ T2 '

Ejw = m + E ; (30)
3 2
pwe o opT
w = L o — 1
fro=ga T (31)
T
E5u = ’% . (32)

In agreement with Eqs. (20), (22) and (18) they are poly-
nomials in g and 7', with C' = 1/(47?), Xp = 1/12 and
X, =0.

As another example, we can consider CME in a non-
abelian chiral quark-gluon plasma at high temperature.
It is known that anomalous flows in the frame used to
define canonical thermal density matrix e~ ## agree with
Egs. (30) in non-interacting limit [15], and we expect
the same even with interactions. To check the value of
the drag, we can take the 1-gluon scattering rate with
momentum transfer g in this frame given by [26]

o dr asT PL(q07‘I)

= % = 27T2 CR qloil’_I)lo 7{]0 5 (33)

R(q)

where C is the color Casimir and pr,(q) = —2Im G%(q)
is the longitudinal gluon spectral density. Because G%
is real in coordinate space, the Fourier transform satis-
fies pr(¢°,q) = —pr(—¢°, —q). Since also pr(¢°,q) —
q°f(q) for ¢° — 0, we must have R(q) = R(—gq), and
the drag force on the heavy quark vanishes

F= / gR(q) =0 (34)

independently of the external magnetic field.

Conclusions — We observed that the second law of
thermodynamics constrains the dependence of the drag
force on the velocity (up to an overall positive coefficient
determined by the microscopic details of the interaction
between the obstacle and the fluid). In equilibrium, the
drag vanishes when the obstacle is at rest in a certain
frame associated with the fluid — the no-drag frame. Con-
versely, for a fluid flowing through a pipe, the drag on the
walls will dissipate the normal flows until they vanish in
the frame where the walls are at rest. For a normal fluid
in equilibrium all conserved currents (energy, charge, en-
tropy) vanish in the no-drag frame.

However, for a fluid carrying anomalous CME or CVE
currents, the no-drag frame is characterized by certain
non-zero values of the anomalous currents proportional
to the magnetic field or vorticity with coefficients which
we found to be universally given by Eqs. (17)-(22).

In other words, the second law of thermodynamics re-
quires the no-drag frame to move relative to the rest
frame of the fluid as a whole (7% = 0, or Landau, frame),
with velocity v = —(§érp B4+E&r,w)/w. This may have in-
teresting consequences. E.g., a magnetic field, via CME,
can create a drag (F = Av) on a static impurity, or a
heavy quark in heavy-ion collisions [12].

It is useful to recall the Landau’s two-fluid picture of
superfluidity [11] in which the normal component of the
flow exerts drag and generates entropy moving past an
obstacle, while the superfluid component, as the name
implies, flows with no drag. The no-drag frame is the
frame where the normal component rests, while the su-
perfluid component can transport energy and charge
(23). Similarly, the anomalous CME and CVE flows of
energy and charge do not vanish in the no-drag frame.
In this sense, anomalous flows are also “superfluid”.

This analogy breaks down when we consider the en-
tropy flow. The superfluid flow (proper) carries no en-
tropy (23). In contrast, anomalous currents can carry
entropy without drag, according to Egs. (5), (17), (18).
It would be interesting to explore potential consequences
(e.g., in a thermomechanical effect) of this novel and un-
usual fact. Though realistic applications are constrained
by anomaly cancellation conditions, the relation of this
phenomenon to gauge-gravity anomaly is intriguing.
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