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9Charles University, Ovocný trh 5, Praha 1, 116 36, Prague, Czech Republic77

10Chonbuk National University, Jeonju, 561-756, Korea78

11Science and Technology on Nuclear Data Laboratory, China Institute79

of Atomic Energy, Beijing 102413, People’s Republic of China80

12Center for Nuclear Study, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan81

13University of Colorado, Boulder, Colorado 80309, USA82

14Columbia University, New York, New York 10027 and Nevis Laboratories, Irvington, New York 10533, USA83

15Czech Technical University, Zikova 4, 166 36 Prague 6, Czech Republic84

16Dapnia, CEA Saclay, F-91191, Gif-sur-Yvette, France85
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Jet production rates are measured in p+p and d+Au collisions at
√
sNN=200 GeV recorded in148

2008 with the PHENIX detector at the Relativistic Heavy Ion Collider. Jets are reconstructed149

using the R = 0.3 anti-kt algorithm from energy deposits in the electromagnetic calorimeter and150

charged tracks in multi-wire proportional chambers, and the jet transverse momentum (pT ) spectra151

are corrected for the detector response. Spectra are reported for jets with 12 < pT < 50 GeV/c,152

within a pseudorapidity acceptance of |η| < 0.3. The nuclear-modification factor (RdAu) values for153

0%–100% d+Au events are found to be consistent with unity, constraining the role of initial state154

effects on jet production. However, the centrality-selected RdAu values and central-to-peripheral155

ratios (RCP) show large, pT -dependent deviations from unity, challenging the conventional models156

that relate hard-process rates and soft-particle production in collisions involving nuclei.157

PACS numbers: 25.75.Dw158
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Jet cross-section measurements in d+Au collisions at the Relativistic Heavy Ion Collider (RHIC) are crucial for159

benchmarking the effects of the so-called cold-nuclear-matter environment, where jet production rates are expected160

to be sensitive to the modification of the nuclear parton densities [1] or to the energy loss of fast partons in the161

nucleus [2–4]. Recent observations of collective behavior in small collision systems at the Large Hadron Collider162

(LHC) and RHIC [5–8] suggest that jet quenching in a possibly formed quark-gluon plasma [9] may play a role as163

well. Measurements of jet production as a function of centrality, an experimental proxy for the impact parameter164

of the deuteron with respect to the nucleus, are particularly important. They may reveal the impact parameter165

dependence of the nuclear parton densities [10], of nonlinear quantum chromodynamics (QCD) effects at very high166

parton densities [11, 12], or of energy loss. More generally, they test the applicability of geometric models that describe167

how soft observables and hard process rates in heavy ion collisions are related [13]. At RHIC energies, jet spectra168

have previously been reported only in p+p collisions [14, 15].169

Modifications to jet production rates from the vacuum expectation are quantified through the nuclear-modification170

factor RdAu ≡ (dN cent/dpT )/ (T cent
dAu dσ/dpT ), where the numerator is the per-event jet yield as a function of transverse171

momentum (pT ) in a given class of d+Au collisions (“cent”), and the denominator is the jet production cross section in172

p+p collisions scaled by the corresponding mean value of the nuclear-overlap function TdAu. Because TdAu cannot be173

directly determined experimentally, it is typically calculated within a Glauber model of relativistic nuclear collisions.174

RdAu values of unity mean that the jet rate in d+Au collisions is consistent with that in p+p collisions after correcting175

for the larger degree of partonic overlap. The double ratio of the RdAu in central (large TdAu) events to that in176

peripheral (small TdAu) events, RCP, quantifies the relative modification between d+Au event classes.177

Previous measurements of hadron production at midrapidity in d+Au collisions [16, 17] found that RdAu is consistent178

with unity at pT =5–10 GeV/c for all centralities, implying that hard-process yields scale with the overlap of the179

incoming partons and constraining the role of nuclear effects. The data further suggested that RdAu for pT >10 GeV/c180

deviates from unity [16], but with small statistical significance. Recent measurements of pT >∼100 GeV/c jet and dijet181

production in p+Pb collisions at the LHC showed a large, unexpected sensitivity to the collision centrality [18, 19]. A182

number of novel explanations [20–22] have been proposed for these effects, which are generally expected to persist to183

RHIC energies, but at large pT where previous measurements have lacked statistical precision. This Letter presents184

the centrality dependence of jet production in an asymmetric collision system over a kinematic range previously not185

measured at RHIC.186

Jets were measured in one of the PHENIX central spectrometers (the “East” arm) [23] during data taking in187

2008. The spectrometer provides a pseudorapidity aperture of |η| < 0.35, π/2 coverage in azimuth, and is situated188

outside a 0.9 T axial magnetic field. Charged-particle tracks are measured by a set of multi-wire proportional189

chambers, including an inner drift chamber and multiple outer pad chambers that together provide a resolution of190

σp/p = 0.7%⊕1%p where p is in GeV/c. Energy deposits from neutral particles are measured by the finely segmented191

electromagnetic calorimeter, composed of two lead-glass Čerenkov and two lead-scintillator sectors, which have a192

resolution determined by beam tests [24] to be σE/E = 5.9%/
√
E ⊕ 0.8% and 8.1%/

√
E ⊕ 2.1%, respectively, where193

E is in GeV. Calibration was performed through the reconstruction of neutral pion decays. The calorimeter further194

provides a trigger signal initiated by the presence of at least 1.6 or 2.1 GeV of energy deposited in one of the groups of195

overlapping 4× 4 towers in the lead-glass or lead-scintillator modules, respectively. In addition to the spectrometer,196

a pair of beam–beam counter detectors situated along the beam line at 3.0 < |η| < 3.9 provide the minimum-bias197

trigger signal and reconstruct the z position of the primary vertex.198

The analyzed p+p and d+Au data sets were carefully chosen, and the single central arm was used, to ensure a199

large, stable and uniform acceptance for jets, and corresponded to 2.0 pb−1 and 23 nb−1 (equivalent to an integrated200

nucleon–nucleon luminosity of 9.1 pb−1), respectively. The centrality of d+Au collisions was characterized using the201

total charge deposited in the Au-going beam-beam counter. A Glauber Monte Carlo [13, 25] description of d+Au202

collisions was used, along with the hypothesis that this charge increased linearly with the number of nucleon–nucleon203

collisions [26], to determine the fraction of d+Au collisions accepted by the minimum-bias trigger, 88 ± 4%, and to204

estimate the mean value of the nuclear-overlap function T cent
dAu for 0%–100% centrality events, as well as those defined205

by the centrality intervals (“cent”) of 0%–20%, 20%–40%, 40%–60%, and 60%–88%. The relationship between the206

Au-going charge and the collision geometry has been validated through, for example, an analysis of forward neutron207

production in d+Au collisions, and analyses of p+p collisions indicate that it should hold for events that produce208

pT = 20 GeV hadrons [26].209

In this analysis, the final-state jet definition is specified by applying the anti-kt algorithm [27, 28] with radius210

parameter R = 0.3 to electromagnetic clusters (in the calorimeter) and charged-particle tracks (in the drift and pad211

chambers), each with a minimum pT of 0.4 GeV/c. The anti-kt algorithm clusters outward from the hard core of212

jets, reducing the sensitivity to detector edges. A detailed set of criteria designed to select charged particles with213

a well-measured momentum while ensuring a large and uniform acceptance were applied to candidate reconstructed214
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tracks. Clusters consistent with arising from the same particle as a reconstructed track were rejected to avoid double215

counting jet constituent energy. Jets which are dominated by reconstructed tracks with a large, erroneously measured216

pT [29] were rejected by requiring at least three constituent particles and by requiring at least one quarter of the217

momentum to arise from clusters. To ensure that the core of the jet is fully contained within the detector, the jet218

axis was required to be separated from the edge of the acceptance by 0.05 units in pseudorapidity and azimuth.219

Detector-level jets, defined as those passing the above criteria, were used to form a transverse momentum spectrum220

(precT ) in each event class. The contribution of the small underlying event background was not subtracted on a jet-221

by-jet basis, but was corrected for in the unfolding procedure described below. Jets were selected from the triggered222

data if a jet constituent fell into the same region of the calorimeter that provided the trigger signal. The trigger223

efficiency was estimated for each event class by checking this condition as a function of precT in minimum-bias events.224

The precT -level spectra were corrected for this efficiency, which rose monotonically with precT and was approximately225

70% (98%) at 10 GeV/c (25 GeV/c).226

Monte Carlo simulations were used to determine the response of the detector to jets and to correct the measured227

spectra. In simulation, jets are defined by applying the anti-kt algorithm to long-lived primary particles, resulting in228

jets with a particle-level transverse momentum (pT ). The pythia 6.4 event generator [30] with the d6t tune [31] and229

cteql1 parton distribution function set [32] was used to generate hard scattering p+p events with a jet within the230

acceptance of the East arm. Six separate samples with exclusive selections on the hard-scattering momentum transfer231

in pythia, consisting of 105 events each, were weighted according to their partial cross-section and combined to form232

a pT spectrum from 8 to 80 GeV/c. The response of the detector was simulated with geant3 [33] and the resulting233

events were analyzed identically to the data. To understand the effects of the underlying event in d+Au collisions,234

jet reconstruction was also performed on the simulated events after they were embedded into minimum-bias d+Au235

data events of each centrality. In each event class, particle-level jets were matched with detector-level jets and the236

correspondence between the true pT and the measured precT was collected into a response matrix R(pT , p
rec
T ).237

The reconstruction and selection efficiency, ε(pT ), for particle-level jets within |η| < 0.3 rose with pT and was ≈ 35%238

(50%) at 10 GeV/c (25 GeV/c) in p+p collisions. The inefficiency was dominated by the minimum requirement on239

the calorimetric fraction of the jet momentum. For a given selection on the particle-level jet pT , the mean value of the240

precT /pT distribution ≈ 0.65-0.70 resulted from missing neutral hadronic energy and tracking inefficiency. The width241

of this distribution was ≈20%–25%, rose slightly with pT , and was driven by jet-by-jet fluctuations in the neutral242

hadronic momentum fraction and not by the resolution on the constituent momenta. In the d+Au event classes, the243

impact of the underlying event on the response decreased systematically with increasing jet pT . For pT =20 GeV/c244

jets in 0%–20% centrality d+Au events, the underlying event background increased the efficiency by 2%, the average245

precT by 0.1–0.2 GeV/c, and the precT resolution by 1%, relative to that in p+p events.246

The precT -level spectra were corrected for the detector response and the presence of the underlying event in d+Au247

collisions through the singular-value-decomposition unfolding method [34, 35]. For an observed spectrum dN/dprecT ,248

this method inverts the equation dN/dprecT = R · dN/dpT by expressing dN/dpT as a linear combination of the249

left singular vectors of R, with coefficients determined by dN/dprecT . This inversion is regularized by keeping the250

contribution only from the k vectors with the largest singular values. The contribution from the remaining vectors is251

truncated to ensure that dN/dpT is unaffected by statistical fluctuations.252

Following standard techniques [34], k was fixed at 5, and the results were validated by comparing dN/dpT , propa-253

gated through R, to dN/dprecT , and by examining the curvature of dN/dpT with respect to the simulated pT spectrum254

used to populate R. The iterative Bayesian method [36] gave consistent results. The statistical uncertainties on255

dN/dpT were evaluated by resampling dN/dprecT according to its uncertainties and observing the changes in dN/dpT .256

Finally, the dN/dpT spectra were corrected for the reconstruction efficiency ε(pT ). At low pT in 0%–20% events, the257

RdAu after unfolding was lower than the detector-level RdAu by ≈20%, while the two are comparable at high pT or in258

peripheral events.259

The p+p differential cross section was constructed [16] via 2πσppN jet(pT )/εppN evtε(pT )∆pT ∆η∆φ, where σpp =260

23.0± 2.2 mb is the minimum-bias cross section, εpp = 0.79± 0.02 is the fraction of jet events meeting the minimum-261

bias condition, and 2π/∆pT ∆η∆φ are phase-space factors. Figure 1 shows the d+Au yields and the p+p cross section,262

which compares well with a perturbative QCD calculation [37, 38].263

The measured spectra and nuclear-modification factors are subject to systematic uncertainties from a variety of264

sources. For most sources, the effects on the results were determined by modifying the simulation sample, the event265

or jet-selection criteria, or the unfolding procedure itself, and repeating the analysis. The variations were applied266

simultaneously in the analyses of the d+Au and p+p spectra to allow for their full or partial cancellation in the RdAu267

and RCP quantities, with the exception of the variation of k, described below.268

The impact of uncertainties on the detector energy scales was determined by varying the momenta of the recon-269

structed tracks and clusters in simulation. The cluster energies were varied by 3%. The track momenta were varied270



6

 (GeV/c)
T

p

 (
m

b 
/ G

eV
)

A
d

T
 /ηd

T
p

/d
N2

, dηd
T

p
/dσ2 d

-810

-710

-610

-510

-410

-310

-210

-110

1  = 200 GeVNNs+Au, d
=0.3 jetR, tkanti-
PHENIX

(a)
410×0-20%, 

310×20-40%, 
210×40-60%, 

10×60-88%, 
p+p

NLO pQCD

)c (GeV/
T

p

 / 
fit

 
p+

p 0.5

1.0

1.5

12 20 30 40 50
(b)

FIG. 1. (Color online) Measured anti-kt, R = 0.3 jet yields in d+Au collisions, and the measured and calculated jet cross
section in p+p collisions, with the data series offset by multiplicative factors. Total systematic uncertainties, including overall
normalization uncertainties, and statistical uncertainties are shown as shaded bands and vertical bars, respectively. In the
bottom panel, the p+p data and perturbative QCD calculation [37, 38] are divided by a fit to the data.

by a track pT -dependent amount, which was 2% for pT ≤ 10 GeV/c and increased linearly to 4% for pT = 30 GeV/c.271

The sensitivity of the results to the jet selection was evaluated by varying the maximum and minimum requirement272

on the calorimetric content of the jet, and by raising the required number of jet constituents. The uncertainty in the273

jet acceptance was evaluated by doubling the fiducial distance between jets and the edges of the detector, and by274

restricting the vertex z position to a narrower range. The uncertainties associated with the unfolding procedure were275

evaluated by changing the power law index of the simulated pT spectrum by ±1, and by increasing and decreasing276

the value of k. Because they are statistical in nature, the effects on the spectra from varying k were treated as277

uncorrelated between the event classes. The sensitivity to the underlying physics model was evaluated by performing278

the corrections with a sample of pythia events analogous to the nominal one but generated with tune a [39] and the279

cteq5l [40] set. A 2% uncertainty, uncorrelated between event classes, was assigned to the spectra below 25 GeV/c280

to cover possible defects in modeling the trigger efficiency.281

For each observable, the magnitudes of the resulting changes were added in quadrature to obtain a total systematic282

uncertainty. The total uncertainty on the spectra increased from 12% at pT = 12 GeV/c to 30% or higher at283

pT = 50 GeV/c and was dominated at all pT by the energy scale. Because the reconstruction procedure in d+Au284

and p+p collisions was identical, and the performance, corrections and resulting spectra are very similar, the effects285

of the variations on RdAu and RCP canceled to a large degree. The uncertainties on this quantity ranged from 4% at286

pT = 12 GeV/c (with no single source dominating) to 15% or higher (dominated by unfolding and physics model) at287

pT = 50 GeV/c.288

Additional normalization uncertainties on the p+p cross section of 10% arose from the uncertainty on σpp/εpp.289

Uncertainties in the determination of TdAu contributed to the RdAu and RCP, such that the total uncertainty on these290

ranged from 3% to 13%.291

Figure 2 summarizes the measured RdAu and RCP quantities. The 0%–100% RdAu is consistent with unity at292

all pT values and is pT -independent within uncertainties. The data are consistent with a next-to-leading order293

calculation [41–44] incorporating the EPS09 [1] nuclear-parton-density set, suggesting that nuclear effects are small294

at high-Q2 in the nuclear Bjorken-x range ≈ 0.1–0.5. When compared to calculations over a range of energy loss rates295

in the cold nucleus [4], the data favor only small momentum transfers between the hard-scattered parton and nuclear296

material, providing constraints on initial-state, or any additional final-state, energy loss.297

In contrast, the centrality-dependent RdAu values strongly deviate from unity, manifesting as a suppression (RdAu <298
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1) and enhancement (RdAu > 1) in central and peripheral collisions respectively, which increase in magnitude with299

pT . Accordingly, the RCP is < 1 in most selections and decreases systematically with pT and in more central events.300

While the suppressed RdAu in 0%–20% events is consistent with a calculation incorporating modest energy loss,301

an enhancement in 40%–88% events, which coincidentally cancels with the suppression to produce an unmodified302

minimum bias rate, is challenging to understand as a distinct physics effect.303

If jet production is unmodified but a physics bias enters into the centrality classification, this could naturally explain304

the RdAu results. In fact, measurements of centrality-dependent yields are understood to be biased by the increased305

multiplicity in hard-scattering nucleon-nucleon events [26, 45–47], which generally increases (decreases) the yield in306

central (peripheral) collisions. The results have been corrected for this bias following Ref. [26], thus slightly increasing307

the magnitude of the modifications. On the other hand, if the charged particle multiplicity several units of rapidity308

away in the Au-going direction were suppressed instead of enhanced in pT > 12 GeV/c jet events, this would reverse309

the sign of the correction and could result in the observed modifications. The jet pT -dependence of this correlation310

has been studied in p+p data and in hijing [48], where it is well-reproduced. The decreased multiplicity results in311

modest changes (< 5%) in the correction factors for events with pT = 20 GeV/c hadrons [26], a much smaller effect312

than what is needed to describe the RdAu data. Thus, no feature of elemental p+p collisions can explain the data313

alone, indicating the relevance of the large nucleus and the need for successful models to describe the correlation314

between soft and hard processes in p+p and d+Au.315

At midrapidity, jet production in p+Pb collisions at the LHC [18] follows a similar modification pattern in the316

Bjorken-x range, xp ∼ xPb
>∼ 0.1. However, the RpPb in those results scales with proton-x, suggesting a scenario317

in which the modifications arise from a novel feature of the proton wavefunction at large x [20–22]. For example,318

if high-x deuteron configurations have a weaker than average interaction strength and strike fewer nucleons in the319

Au nucleus [21], this would result in the unmodified, suppressed and enhanced RdAu in minimum-bias, central and320

peripheral events, respectively. If so, the observed centrality dependence of forward hadron production [49–52] in321

d+Au collisions may arise from the same mechanism as the results presented here, because both are kinematically322

associated with the scattering of a large-x parton in the deuteron. Finally, using an alternate estimate of TdAu323

provided by applying the Glauber–Gribov color fluctuation model [53, 54] to the data would increase the deviation324

of RdAu in the most central and peripheral events from unity by 10% and 5%, respectively.325

This Letter presents the first measurement of high-pT jet production in d+Au collisions at RHIC. The jet rate326

in inclusive collisions is broadly consistent with expectations, providing constraints in a new kinematic regime on327

modifications to the parton densities in nuclei and on the energy loss of fast partons in the nuclear medium. When328

compared to the expectation from geometric considerations, the rates in centrality-selected events strongly deviate329

from unity, featuring suppression and enhancement patterns in central and peripheral events, respectively. These330

deviations grow with increasing pT , but cancel in the overall jet rate, and challenge the conventional pictures of how331

hard-process rates and soft-particle production are related in collisions involving nuclei.332
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