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Spin-imbalanced ultra-cold Fermi gases have been widely studied recently as a platform for ex-
ploring the long-sought Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superfluid phases, but so far con-
clusive evidence has not been found. Here we propose to realize an FF superfluid without spin
imbalance in a three-dimensional (3D) fermionic cold atom optical lattice, where s- and p-orbital
bands of the lattice are coupled by another weak moving optical lattice. Such coupling leads to a
spin-independent asymmetric Fermi surface, which, together with the s-wave scattering interaction
between two spins, yields an FF type of superfluid pairing. Unlike traditional schemes, our proposal
does not rely on the spin imbalance (or an equivalent Zeeman field) to induce the Fermi surface
mismatch and provides a completely new route for realizing FF superfluids.

PACS numbers: 03.75.Ss, 67.85.-d, 74.20.Fg

The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state,
characterized by Cooper pairs with finite center-of-mass
momenta [1, 2], is a central concept for understanding
many exotic phenomena in different physics branches [3].
A crucial ingredient for realizing FFLO states is a large
Zeeman field that induces Fermi surface mismatch of
two paired spins [1, 2]. In recent years, FFLO states
have been extensively studied in ultra-cold Fermi gases,
where the population imbalance between two atomic in-
ternal states (pseudo-spins) serves as an effective Zee-
man field [4–14]. Despite the intrinsic advantages of cold
atoms compared to their solid state counterparts, conclu-
sive evidence of FFLO states has not been found yet be-
cause of various obstacles. For instance, a large Zeeman
field suppresses the superfluid order parameter, leading
to a very narrow parameter region for FFLO states in
2D or 3D which can be easily destroyed by thermody-
namic fluctuations [4–6]. In 1D, the parameter region for
FFLO states could be large, but the quantum fluctuation
is strong [7, 12, 14]. The recently proposed schemes us-
ing spin-orbit coupling and in-plane Zeeman field in a 3D
Fermi gas may potentially overcome these obstacles [15–
21] in principle, but they face practical experimental is-
sues such as the large spontaneous photon emission from
the near-resonant Raman lasers [22–31] and the strong
three-body loss at Feshbach resonance in the presence of
spin-orbit coupling [23–26].

In this Letter, we propose a new route for realizing FF
superfluids in ultra-cold Fermi gases without involving
population imbalance of two spin states that interact for
generating Cooper pairing. Instead, we induce an asym-
metric Fermi surface for the generation of FF states by
other means and the populations of the two spins are
fully equal. Our main results are the following:

1) We show that the s- and px-orbital bands of a
3D static optical lattice can be coupled using a weak
1D moving optical lattice along the x direction, which
can be generated by two counter-propagating lasers with

the frequency difference matching the s-px band gap.
The s- and px-bands can be denoted as the band-
pseudospin, and the moving lattice induces a band-
pseudospin-momentum (i.e., spin-orbit) coupling and an
in-plane Zeeman field, which yield an asymmetric Fermi
surface along the x direction. The realization of such
band-pseudospin-momentum coupling may provide a new
platform for exploring exotic spin-orbit coupling physics.

2) We show that the asymmetric Fermi surface, to-
gether with the s-wave pairing interaction between two
equally populated hyperfine spin states, can induce an
FF type of Cooper pairing within a large parameter re-
gion in the 3D optical lattice, in sharp contrast to the
narrow parameter region for the spin-imbalanced Fermi
gas [6, 7]. Because of the 3D nature of the FF superfluids,
the quantum fluctuations are also suppressed. The gen-
erated FF state is thermodynamically much more stable
than the spin-imbalanced Fermi gas. Compared to the
spin-orbit coupled schemes [15–21] that require near res-
onant Raman lasers [23–31], all lasers used here are far-
detuned, therefore the proposed scheme should work for
all types of fermionic atoms, including 6Li [14]. Further-
more, because the hyperfine spins are not coupled with
the momentum, the s-wave scattering interaction should
be the same as regular Fermi gases without significant
three-body loss at Feshbach resonance. These intrinsic
advantages of our spin-balanced scheme make it experi-
mentally more feasible than the spin-imbalanced schemes
(with [4–14] or without spin-orbit coupling [15–21]), and
thus may open a new route for observing FF superfluids.

Asymmetric Fermi surface in a driven optical lattice:
Consider a degenerate spin-1/2 Fermi gas trapped in a
static 3D optical lattice. Our proposed experimental
setup is illustrated in Fig. 1(a). An additional 1D mov-
ing lattice along the x direction is applied to couple the s-
and px-orbital bands of the static lattice. The moving lat-
tice is generated by two counter-propagating lasers with a
frequency difference of ω that matches the s-px band gap,
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FIG. 1: (Color online) (a) An illustration of the experimental
proposal: a moving lattice (orange arrows) induces effective
two-photon Raman couplings between s- and px-bands of a
3D static optical lattice (only show 2D here, grey arrows). (b)
Plot of different coupling strengths Ω, α and β as a function
of the static lattice depth V0. The moving lattice depth V ′

x =
0.8ER with the recoil energy ER = h2/2ma2. (c) The single-
particle band structure for V0 = 3.0ER. h = 5.5ts and µ =
3ts with ts = 0.111ER. The colors represent hybrid orbital
compositions for each momentum state (red for s- and blue
for px-orbital states). Dashed lines: bare s- and shifted px-
orbital bands without coupling.

resulting in a two-photon Raman coupling between these
two bands. All lasers are far-detuned to avoid heating
from spontaneous emission. The overall time-dependent
lattice potential can be written as

V (r, t) =
∑

η=x,y,z

V0 cos
2(kLη)+V ′

x cos
2
(

kLx+
ωt

2

)

, (1)

where V0 and V ′
x are the static and moving lattice depths,

kL = π/a with the lattice constant a.
We consider a large static lattice V0, but a weak

moving lattice V ′
x (i.e., V ′

x ≪ V0), therefore only on-
site and nearest-neighbour tunnelings need be consid-
ered and the total wave function |Ψ〉 can be expanded
in terms of the static lattice Wannier functions |Ψ〉 =
∑

j csj |s
j〉 + cpxj |p

j
x〉, where j is the site index in the

x direction. |sj〉 and |pjx〉 are the s-band and px-band
Wannier functions at the j-th lattice site, csj and cpxj

are their annihilation operators, respectively. Along the
other two directions, p-band is not coupled and only s-
band is considered and their related indices are neglected
here for simplicity.
Under the Wannier basis, we can derive the sin-

gle particle tight-binding Hamiltonian, where the time-
dependence in the coupling between different orbits could
be further eliminated using the rotating wave approx-
imation [32], similar as the well-known two level Rabi
oscillation. The difference from the Rabi oscillation is
that the two levels here (s and px bands) have differ-

ent band dispersions. Physically, there are three types
of possible couplings between s and px bands, as illus-
trated in Fig. 1(a), with the coupling strengths given

by Ω =
V ′

x

4
〈si| sin(2kLx)|p

i
x〉, α =

V ′

x

2
〈si| cos(2kLx)|p

i+1
x 〉,

and β =
V ′

x

2
〈si| sin(2kLx)|p

i+1
x 〉. The first term Ω de-

notes the coupling of two orbital states at the same site,
while the last two terms α and β are the couplings be-
tween nearest neighbor sites [33]. The values of Ω, α, and
β calculated from the Wannier functions are plotted in
Fig. 1(b) (see also Fig. S1 [32]). β is usually small and
not important for the physics discussed here.
The resulting time-independent single-particle Hamil-

tonian in the momentum space can be written as

H0(k) =

(

ǫs(k) + h Π(kx)
Π(kx) ǫp(k)− h

)

(2)

under the basis (cs(k), cpx
(k))T , where Π(kx) =

Ω − α sin(kxa) + β cos(kxa), ǫs(k) = −2ts[cos(kxa) +
cos(kya) + cos(kza)] − µ and ǫp(k) = 2tp cos(kxa) −
2ts[cos(kya) + cos(kza)] − µ. ts and tp are the nearest
neighbor tunneling amplitudes for atoms in the s- and
px-orbital states, respectively. 2h is the energy differ-
ence between ω and the band gap ∆g. µ is the chemi-
cal potential. Note that α sin(kxa)σx corresponds to the
band-pseudospin-momentum coupling.
In the absence of α, H0(−k) = H0(k), revealing that

the single-particle Hamiltonian is symmetric under inver-
sion transformation. This inversion symmetry is broken
when α and Ω coexist. A typical single-particle band
structure, which is asymmetric along kx-axis, is shown
in Fig. 1(c). Here we just show the Fermi surface in the
ky,z = 0 plane. The Fermi surface is still symmetric along
ky and kz directions. The orbital and hyperfine-spin de-
grees of freedom of the atoms are independent, there-
fore the coupling between different orbital states does
not break the spin degeneracy and the hybrid bands are
spin balanced at any k point.
Pairing Hamiltonian: Consider a spin-1/2 Fermi gas

with equal spin populations loaded on such asymmet-
ric orbital band. The dominant on-site atom-atom
interaction between opposite spins can be made at-
tractive via Feshbach resonance, similar as regular
two component Fermi gases [34]. As a good ap-
proximation, the on-site atom-atom interaction can
take the same form as the time-independent static
system [32]. In the momentum space, the inter-
and intra-band interaction term can be written as
Hint = −

∑

µν gµνc
†
↓µ(k1)c

†
↑ν(k2)c↑ν(k3)c↓µ(k4), where

k1 + k2 = k3 + k4 due to the momentum conservation
for the two-body scattering process. µ and ν denote the
orbital states of two spins. gµν = g

∫

dx|wµ(x)|
2|wν(x)|

2

is the interaction coefficient for two atoms in two orbital
states (labelled by µ and ν) and g is the two-body inter-
action strength in free space. To compare the strengths of
the interactions between two orbital states, we approx-
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imate the lattice potential at each site by a harmonic
trap, which is a good approximation when the static lat-
tice is not very weak. The relative ratio of the interaction
strength is found to be gss : gsp : gps : gpp = 1 : 0.5 : 0.5 :
0.75 [32]. Hereafter we denote gss = U .
Under the mean-field approximation, we can rewrite

the interaction term with the effective pairing between
atoms. Because the inversion symmetry is broken for
the single-particle Hamiltonian, the system may favor
Cooper pairing with a finite center-of-mass momen-
tum between two fermions of opposite spins. For sim-
plicity, the chemical potential is chosen appropriately
where there is only one simple Fermi surface (see Fig.
1(c)), therefore we could consider a plane-wave FF-type
inter- and intra-band pairing ∆µν(x) = ∆µνe

iQ·x, sim-
ilar as that in spin-orbit coupled system [15–21]. Here
∆µν = gµν〈c↑µ(Q/2 + k)c↓ν(Q/2 − k)〉 denotes the am-
plitude of the s-wave order parameter between two or-
bital states µ and ν, and the FF vector Q = (Q, 0, 0)
is the Cooper pairing momentum which is along the
moving lattice direction. Note that the effective pair-
ing on the asymmetric Fermi surface (Fig. 1c) could be
k-dependent (i.e., with non-s-wave components) due to
the k-dependent hybridization coefficients (determined
by the eigenfunction of the Hamiltonian (2)) of two
orbital bands for the asymmetric Fermi surface [35].
In the basis of spinor (Ψ(Q/2 + k), Ψ∗(Q/2 − k))T

with Ψ = (c↑s, c↓s, c↑px
, c↓px

)T , the Bogliubov-de Gennes
(BdG) Hamiltonian can be written as

HBdG(k) =

(

H0(
Q

2
+ k)⊗ σ0 ∆4×4

∆†
4×4 −H0(

Q
2
− k)⊗ σ0

)

,

(3)
where σi (i = x, y, z, 0) are the Pauli matrices,

∆4×4 =

(

∆ss −∆sp

∆ps ∆pp

)

⊗ (−iσy) . (4)

For each set of system parameters (V0, V
′
x, U), the cor-

responding parameters Ω, α, β, ts, tp in the BdG Hamil-
tonian (3) are calculated from the Wannier functions,
from which the order parameter amplitude ∆µν and the
FF vector Q are simultaneously obtained by minimiz-
ing the thermodynamic potential. When ∆µν 6= 0 and
Q 6= 0, the system is in an FF phase. When ∆µν 6= 0,
Q = 0, the system is in a BCS phase. Otherwise, the
system is a normal gas.
Phase diagrams : In Fig. 2 we plot the intra-orbital

order parameter ∆ss and the Cooper pairing momentum
Q with respect to the static and moving lattice depths
V0, V

′
x. ∆sp and ∆pp are much smaller than ∆ss [32],

which is ascribed to the initial dominant populations of
the s-orbital band at the position of the chemical po-
tential. The s- and px-orbital band tunneling and cou-
pling parameters (ts, tp, Ω, α) depend on the static lat-
tice depth V0 implicitly, therefore ∆ss does not change
monotonically. However, Ω and α depend on V ′

x linearly,

FIG. 2: (Color online) Phase diagrams of FF superfluids. The
color describes the amplitude of (a) the order parameter ∆ss

and (b) the FF vector Q. Other parameters are U = 6.0ts,
µ = 10.0ts, h = 8.0ts.

which directly determine the single particle band struc-
ture, therefore Q increases with increasing V ′

x. Because
the coupling between s- and px-orbital states does not de-
pend on spins (the internal states) of atoms, Ω, α and β
modify the energy dispersion in the same way for the two
spins, leading to the spin degenerate asymmetric Fermi
surface as shown in Fig. 1(c). Such spin-balanced asym-
metric Fermi surface has little effect on suppressing the
order parameter, in contrast to the strong suppression of
the finite momentum pairing order induced by an exter-
nal Zeeman field. Therefore ∆ss is large and does not
change much in the whole parameter region. Q is pro-
portional to both Ω and α as shown in Fig. 2(b). When
V ′
x = 0, all the coupling coefficients vanish and the band

inversion symmetry is preserved, thus the superfluid be-
comes a conventional BCS state.

When the on-site interaction U is tuned by changing
the s-wave scattering length through Feshbach resonance,
the system undergoes a BCS-BEC crossover. BCS-BEC
crossover physics of Fermi gases has been widely studied
in free space and in lattices [36, 37]. Here we present
the phase diagram in the U -V ′

x plane in Fig. 3. From
Fig. 3(a), we see ∆ss is mainly determined by the U and
changes only slightly with the increase of moving lattice
depth V ′

x. FF states with large Q exist in a large param-

FIG. 3: (Color online) Phase diagrams in the BCS-BEC
crossover. The color describes the amplitude of (a) the or-
der parameter ∆ss and (b) the FF vector Q. V0 = 4ER with
ts = 0.0855ER. Other parameters are µ = 10.0ts, h = 8.0ts.
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eter region which dominates when the moving depth is
large. In the weak and medium interaction regimes, the
order parameters are small and the ground state is mainly
governed by the single-particle Hamiltonian. ThereforeQ
could be significant because of its sensitivity to the single
particle dispersion. In the very strong interaction regime,
the fermions form tightly bound molecules and the influ-
ence of the asymmetric energy dispersion on Cooper pairs
is negligible. Therefore Q gradually decreases for a large
U and the ground state eventually becomes a BCS state.
Stability of FF superfluids : The stability of the FF

superfluid may be characterized by the thermodynamic
potential difference EFF −EBCS between the FF ground
state and the possible BCS excited state (by enforc-
ing Q = 0), which is shown in Fig. 4(a). The larger
|EFF−EBCS|, the FF state is more stable. When V ′

x = 0,
the inversion symmetry is preserved and the FF super-
fluid becomes the BCS state, therefore EFF = EBCS.
With the increasing V ′

x, EFF − EBCS becomes negative,
indicating that the asymmetric energy dispersion favors
FF superfluids. In Fig. 4(b), we plot the thermodynamic
potential E in the ∆ss-Q plane for the premium values
of ∆sp and ∆pp that minimize the total energy, which
shows that the FF state is indeed the global minimum of
the thermodynamic potential.

Compared with a Zeeman-field induced spin-
imbalanced system, we find that the energy difference
between the FF and BCS states in our system is one
order of magnitude larger for the same interaction
strength. Moreover, the FF states only exist in a very
narrow Zeeman field parameter region (∼ 10−2ts) in the
spin-imbalanced schemes and thus it is hard to find their
signature experimentally. In contrast, the FF superfluids
in our spin-balanced system exist in almost the whole
parameter region.
Ω and α are proportional to the moving lattice depth

V ′
x, and can be tuned in a wide parameter range to

achieve an extremely asymmetric energy dispersion. In
Fig. 4(a), we see EFF −EBCS decreases sharply when V ′

x

is large. Therefore with a larger V ′
x, |EFF−EBCS| may be

much larger than that shown in Fig. 4(a), which is gener-
ally impossible in the spin-imbalanced Fermi gases. This
advantage, together with the large parameter region for
FF states, make our proposed spin-balanced Fermi gas
experimentally more feasible for observing FF superflu-
ids than the spin-imbalanced systems.
Experimental observation: The proposed FF super-

fluids can be realized with different types of fermionic
atoms, such as 40K and 6Li. In the following, we il-
lustrate the experimental setup and observation using
40K. The ultra-cold 40K gas with a spin-balanced mixture
of internal states |F,mF 〉 = |9/2,−9/2〉 and |9/2,−7/2〉
[52] is trapped in a 3D static optical lattice created by
counter-propagating far-detuned lasers with wavelength
λ = 1064 nm that defines the wavevector kL = 2π/λ
and the recoil energy ER = ~

2k2L/2m = 2π~ × 4.5 kHz.

FIG. 4: (Color online) (a) The thermodynamic potential
difference of the FF states and the possible BCS state as
a function of V ′

x for V0 = 4ER (blue solid line, for which
ts = 0.0855ER) and V0 = 5ER (orange dashed line, for which
ts = 0.0658ER). (b) The contour plot of the thermodynamic
potential E in the ∆ss-Q plane for V0 = 4.0ER, V

′

x = 2.0ER.
The cross symbol corresponds to the self-consistent solution
∆ss = 3.14ts, Q = 0.377kL. Other parameters are U = 8.0ts,
µ = 10.0ts, h = 8.0ts.

The lowest two orbital bands, s- and px-orbital, have a
gap ∆g ≈ 2.6ER when the static lattice depth is tuned
as V0 = 3.0ER. The 1D moving lattice, created by an-
other two counter-propagating lasers with a slight fre-
quency difference of ω ∼ ∆g/~, can be tuned to have a
lattice depth of V ′

x = 0.1 ∼ 0.8ER. With these parame-
ters, the resulting coupling strengths have a range of Ω
= 0.24 ∼ 1.88ts and α = 0.19 ∼ 1.56ts (ts = 0.111ER).
The maximum value of FF momentum Q could be as
large as 0.3kL and the corresponding order parameter
∆ ∼ ts. Signatures of FF superfluids can be captured
by the atom shot noise [38], or the sound speed measure-
ment [39–41].

Discussion: In our spin-balanced system, only FF su-
perfluids are possible because of the asymmetric s-p hy-
brid band structures. Even though the FF superfluid
momentum Q could be gauged away from the order pa-
rameter’s phase, Q is still revealed in the supercurrent of
the system which is a gauge-invariant observable quan-
tity [32]. The measurement of the supercurrent provides
useful information of the system such as the s-p band
coupling strength and the interaction strength.

Finally, we note that similar time periodic modulation
of the lattices to generate exotic band structure, know
as “Floquet engineering” [44–50], has been investigated
extensively in experiments, leading to the observation of
various important phenomena [42, 43, 51, 52], where the
atomic spin states are irrelevant. However, the effects of
s-wave interaction between two spins of the Fermi gas has
not been well explored and our proposed FF superfluids
showcase the rich quantum phases that may be generated
by the s-wave two-body interactions in such Floquet sys-
tems. Our proposed band-pseudospin-momentum cou-
pling in optical lattices may open a new avenue for ex-
ploring exotic spin-orbit coupling physics.
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Jensen, and P Törmä, New J. Phys. 8, 179 (2006).
[12] H. Hu, X.-J. Liu, and P. D. Drummond, Phys. Rev. Lett.

98, 070403 (2007).
[13] T. K. Koponen, T. Paananen, J.-P. Martikainen, and P.
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