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We investigate coupled spin and heat transport in easy-plane magnetic insulators. These materi-
als display a continuous phase transition between normal and condensate states that is controlled
by an external magnetic field. Using hydrodynamic equations supplemented by Gross-Pitaevski
phenomenology and magnetoelectric circuit theory, we derive a two-fluid model to describe the dy-
namics of thermal and condensed magnons, and the appropriate boundary conditions in a hybrid
normal-metal|magnetic-insulator|normal-metal heterostructure. We discuss how the emergent spin
superfluidity can be experimentally probed via a spin Seebeck effect measurement.
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Introduction.—It has been many years since Kapitza
first observed that helium, when cooled below a temper-
ature of 2.17 K, displays properties attributable to a new
quantum phase of matter [1], such as the ability to flow
without dissipation through thin capillaries, the quanti-
zation of the vorticity and a record thermal conductivity.
These properties are well understood within the frame-
work of the two-fluid model proposed independently by
Tisza [2] and Landau [3], in which He II is described as
a mixture of a normal fluid, which is viscous and carries
all the entropy of the system, and a superfluid that flows
without friction and carries no thermal energy.

Only a few years later, the two-fluid model successfully
threw light upon the apparent absence of the usual ther-
moelectric effects, such as the Seebeck and the Peltier
effects, in the superconducting state [4]. Indeed, in su-
perconductors, all the conventional thermoelectric prop-
erties vanish due to the coexistence of the thermal quasi-
particle current with a dissipationless supercurrent that
counterflows with it. The analogy between the supercur-
rent of electric charge in superconductors and the mass
superflow in helium stems from the underlying common
origin of these phenomena, i.e., the spontaneous breaking
of the U(1) symmetry underlying Bose-Einstein conden-
sation (BEC, of either atoms or Cooper pairs) and the
associated macroscopic quantum coherence. Therefore, a
superfluid phase can be described by a two-fluid model,
in which the condensed and itinerant atoms are, loosely
speaking, identified with the superfluid and normal com-
ponents, respectively. This concept can be extended to
a variety of systems exhibiting U(1) symmetry breaking
and thus the coexistence of a normal and a Bose-Einstein
condensed fluids, such as excitons [5, 6], polaritons [7, 8],
and magnons [9–11].

A growing interest has recently arisen in magnonic sys-
tems as promising setups for achieving room-temperature
Bose-Einstein condensation, motivated in part by the ex-
perimental progress of Demokritov et al. [12] on para-
metrically pumped magnon condensates. More recently,
a theoretical proposal for the realization of a BEC of

magnons by means of direct spin current injection from
an adjacent normal metal with strong spin-orbit coupling
was put forward by Bender et al. [13]. Unlike BEC of
real particles, BEC of quasiparticles and, in particular,
quasiequilibrium magnons does not require low tempera-
tures, since the high densities of magnons needed for the
condensate to form can be produced via external pump-
ing or by tuning the magnetic field, which is facilitated
by their small effective mass (corresponding to strong ex-
change). In this Letter, we focus on a ferromagnetic in-
sulator with easy-plane magnetic anisotropy as a simple
model system that displays a transition between normal
and BEC phases and exhibits superfluid behavior. The
magnet is sandwiched between two metallic reservoirs
that act like thermal baths, set at two different temper-

FIG. 1. Normal-metal|easy-plane insulator|normal-metal hy-
brid heterostructure. The state of the equilibrium magne-
tization, which is determined by the interplay between the
magnetic field B and the anisotropy energy K, can be per-
turbed by magnon transport driven by temperature gradient
∇T and spin accumulations µl,r = µl,rẑ sustained by the
metal leads. At low magnetic fields, the spin Seebeck current
(polarized along the z axis) jx induced by the temperature
gradient ∇T coexists with a superfluid spin counterflow jc,
as discussed in the text.



2

atures, and that may provide spin accumulation via the
spin Hall effect (as illustrated in Fig. 1). The tempera-
ture difference applied across the ferromagnet induces a
spin current into normal metals, which can be measured
as an inverse spin Hall voltage and is dubbed the spin
Seebeck effect [14]. By sweeping the magnetic field in
the z direction, the system can be tuned to a state where
the (xy) easy-plane rotational symmetry is spontaneously
broken, and which, as a result, supports collective spin
currents. We show that the spin Seebeck effect is then
diminished, as a result of counterflow between conden-
sate and thermal spin currents. As a practical utility,
our results may provide novel routes to control thermal
spin currents.

Model and hydrodynamic equations.—We consider the
following model Hamiltonian for an easy-plane magnetic
insulator subjected to a field B oriented along the z axis:

H =

∫
d3r

(
− A

2s
ŝ · ∇2ŝ +Bŝz +

K

2s
ŝ2z

)
, (1)

where ŝ is the spin density operator (in units of ~), A
the exchange stiffness, K > 0 the constant governing
the strength of the local easy-plane anisotropy, and s
the saturation spin density. Performing the Holstein-
Primakoff transformation [15], ŝz = Φ̂†Φ̂ − s and ŝ− =√

2s− Φ̂†Φ̂Φ̂, it is straightforward to recast the Heisen-
berg dynamics of ŝ as a superfluid coupled to a normal
cloud (see, e.g., Ref. [16]). By, furthermore, including
phenomenologically the Gilbert damping constant α, the
corresponding Gross-Pitaevksi equation (following the
Popov approximation [17]) reads as

(i− α)~∂tΦ = (~Ω +Knc/s− iR) Φ−A∇2Φ. (2)

Here Φ ≡ 〈Φ̂〉 =
√
nce
−iϕ is the superfluid order param-

eter, with ϕ being the precessional angle of the magne-
tization density in the xy plane and nc (nx) condensed
(normal) magnon density. In particular, sz = nc+nx−s.
We are assuming small deviations from the ground state
(in the absence of anisotropy), so that nc + nx � s,
throughout. ~Ω ≡ B−K(1−2nx/s) is the normal-phase
magnon gap, and the collisional termR describes the cou-
pling to the finite-temperature normal cloud [18], which

is defined by φ̂ ≡ Φ̂ − Φ, with 〈φ̂†φ̂〉 being the normal
cloud density nx. At zero temperature (and thus R→ 0),
Eq. (2) recasts the Landau-Lifshitz-Gilbert equation [19]
for small-angle dynamics of the spin density around the
−z direction (see Fig. 2). It is, furthermore, illuminat-
ing to rewrite Eq. (2) as the superfluid hydrodynamic
equations:

ṅc + ∇ · jc = −Γcx − 2αωnc, (3a)

~(ω − Ω)−Knc
s

= A

[
(∇ϕ)

2 −
∇2√nc√

nc

]
, (3b)

where ω = ϕ̇ is the condensate frequency and jc = ncvc
the condensate spin current (polarized out of the easy

FIG. 2. Equilibrium phase diagram. The condensate phase
boundary is at T/Tc = (1 − B/K)2/3/Γ3/2ζ3/2, where Tc ≡
As2/3 estimates the Curie temperature. In the normal phase,
the net spin density s is oriented along the (negative) z axis;
the condensate spontaneously breaks U(1) symmetry around
the z axis, as manifested by a static canting of the magnetiza-
tion, whose deviation from its normal-state equilibrium value
along the z axis is parametrized by the condensate density
nc. In the absence of an applied field B, the ferromagnet is
a planar xy magnet. The reduction of the spin Seebeck cur-
rent jx (red curve) as the magnetic field B decreases below
the transition point, at a fixed T , is a direct and observable
signature of superfluidity.

plane, i.e., in the z direction), where vc = −~∇ϕ/m
and m ≡ ~2/2A is the kinetic magnon mass. Γcx =
2ncR/~ is the collision term describing equilibration be-
tween the condensate and the thermal cloud, defined as
Γcx = 2η(ω − µ/~)nc [17], with η parametrizing the rate
of the thermal cloud-condensate scattering [20]. Chemi-
cal potential µ and temperature T parametrize the Bose-
Einstein distribution of the thermal cloud.

The equilibrium phase diagram of the easy-plane con-
densate is shown in Fig. 2, which is obtained by a mean-
field self-consistency analysis for nc ≥ 0 coupled to the
thermal cloud [20]. In the following, we will be interested
in the linear response of magnons to a temperature gra-
dient. Linearizing with respect to small nonequilibrium

variables—ω, vc, and δnc ≡ nc − n(0)c for the condensate
and µ and δT ≡ T −T (0) for the cloud—Eqs. (3) become

δṅc + nc∇ · vc =2η(µ/~− ω)nc − 2αωnc, (4a)

~ω =K
δnc + 2δnx

s
−A∇

2δnc
2nc

. (4b)

Here δnx ≡ nx−n(0)x can be expanded in terms of µ and
δT (disregarding its subleading dependence on δnc). The
superscript (0), which was dropped in Eqs. (4) without
danger of ambiguity, denotes the corresponding equilib-
rium values in the absence of the thermal flux.

The above condensate equations are complemented by
hydrodynamic equations for the thermal cloud, which
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can be easily constructed within the Boltzmann trans-
port theory [20]:

δṅx + ∇ · jx = 2η(ω − µ/~)nc − gnµµ− gnT (T − Tp),
(5a)

δu̇+ ∇ · jq = −guT (T − Tp)− guµµ. (5b)

Here u is the energy density of the thermal cloud,
Tp is the phonon temperature, and the g coefficients
parametrize relaxation of magnons by the (phononic)
environment. [Note that a contribution to the energy
rate equation (5b) from the condensate-cloud scattering
is missing as it is quadratic in the nonequilibrium bias:
δu̇|cx ∝ ~ω(~ω − µ).] The linear response spin, jx, and
heat, jq, current densities, furthermore, can be expanded
as

jx = −σ∇µ− ς∇T, jq = −κ∇T − ρ∇µ, (6)

where σ, κ, ς, and ρ are respectively the bulk spin and
heat conductivities and the intrinsic spin Seebeck and
Peltier coefficients.

Boundary conditions.—The spin and heat flow across
the sample must be determined consistently with the
boundary conditions defined at the F|N interfaces at
x = 0, L. Accounting for interfacial static spin-transfer
and spin-pumping torques, the linearized z component
of the condensate spin current density injected from the
left reservoir with a nonequilibrium spin accumulation
µl = µlz is given by [25]

jc|x=0 = ncg
↑↓
l (µl − ~ω)/2π~s, (7)

where g↑↓l is the real part of the (dimensionless) spin
mixing conductance (per unit area). The thermal spin
and heat currents flowing across the left interface are
given by

jx|x=0 = G(µl − µ)|x=0 + S(Tl − T )|x=0, (8a)

jq|x=0 = K(Tl − T )|x=0 + Π(µl − µ)|x=0, (8b)

Here Tl is the electron temperature and G, K, S, and
Π are the interfacial magnon spin and thermal conduc-
tances and spin Seebeck and Peltier coefficients, respec-
tively.

The boundary conditions, Eq. (7) and Eq. (8) along
with the analogous expressions for the right interface,
together with the two-fluid hydrodynamic relations,
Eqs. (4) and (5), constitute a complete set of linearized
equations from which we can yield solutions for all the
dynamical variables. We will now solve this problem in
a steady state (i.e., δṅc = δṅx = δu̇ = 0 and ω = const),
when the normal-metal reservoirs are thermally biased:
Tl = T − ∆T/2 and Tr = T + ∆T/2. We will suppose,
for simplicity, that the phononic heat transport and ther-
mal profile are only weakly disturbed by the magnons, so
that Tp = T + ∆T (x/L − 1/2), where we, furthermore,
neglected interfacial Kapitza resistances.

Results.—Let us investigate the flow of magnonic spin
and heat across a mirror-symmetric N|F|N structure
driven by a small temperature bias ∆T . We will consider
two limiting cases: the magnet is sandwiched (1) between
two heavy metals acting as good spin sinks (as may be
exemplified by Pt|YIG|Pt), in which case µl,r = 0, or
(2) between two light metals being perfectly poor spin
sinks (possibly approximated by Cu|YIG|Cu), in which
case spin accumulations build in each lead to block the
total spin current across the interfaces, jc + jx → 0 at
x→ 0, L.

Since the spin-preserving relaxation of magnon distri-
bution towards the phonon temperature, as parametrized
by guT in Eq. (5b), does not rely on relativistic spin-orbit
interactions, we may expect it to be an efficient process at
high temperatures (stemming, e.g., from the modulation
of exchange coupling by lattice vibrations). The corre-
sponding lengthscale, which is governed by the inelastic
magnon-phonon scattering, λu ≡

√
κ/guT , can therefore

be taken to be shorter than other relevant lengthscales,
which are associated with relativistic physics (i.e., λn and
λcx defined below). In this regime, we can set T → Tp,
which decouples the spin transport from heat dynamics,
resulting, in the steady state, in the following diffusion
equation for magnons:

∂2xµ− (µ− ~ω)/λ2cx − µ/λ2n = 0, (9)

which is solved by

µ = (λm/λcx)2~ω + cle
−x/λm + cre

(x−L)/λm . (10)

Here λ−2m ≡ λ−2n + λ−2cx , λn ≡
√
σ/gnµ is the thermal

magnon diffusion length, and λcx ≡
√
~σ/2ηnc is the

condensate-cloud equilibration length (where nc is the
condensate equilibrium density according to the phase
diagram in Fig. 2). The boundary conditions are given
by

jx(0) = G∗cl − ς∆T/L = G[µl − µ(0)], (11a)

jx(L) = −G∗cr − ς∆T/L = G[µ(L)− µr], (11b)

for the cloud (supposing L � λm), where µ(0, L) =
(λm/λcx)2~ω + cl,r, G∗ ≡ σ/λm, and

vc(0) = g↑↓(µl − ~ω)/2π~s, (12a)

vc(L) = g↑↓(~ω − µr)/2π~s, (12b)

for the condensate. The reservoir spin accumulations are
µl = µr = 0 in the good spin sink case and are found
according to ncvc + jx = 0 (at both interfaces) for the
poor spin sinks. Integrating the steady-state version of
Eq. (4a),

∂xvc = 2η(µ/~− ω)− 2αω, (13)

we get for ∆vc ≡ vc(L)− vc(0):

∆vc =
2ηλm(cl + cr)

~
−
[
2α+ 2η(λm/λn)2

]
ωL. (14)
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In the simpler, good spin sink case (where the spin
Seebeck physics is manifested through the total spin cur-
rents injected into the metal reservoirs), we thus have 5
linear equations, (11), (12), and (14), for 5 unknowns:
cl,r, ~ω, and vc at x = 0, L. For poor spin sinks (where
the spin Seebeck physics is manifested through the spin
accumulations induced in the metal reservoirs), we have
two additional unknowns, µl,r, and two more equations
(for the vanishing total spin current at the interfaces).
Note that the differential equation (4b) for δnc decou-
ples in the linearized treatment. Adding and subtracting
Eqs. (11), and substituting the difference of Eqs. (12)
into Eq. (14) leads to

(G+G∗)c− − ς∆T/L−Gµ− = 0,

(G+G∗)c+ +G(λm/λcx)2~ω −Gµ+ = 0,

2ηλmc+
~

−

[
α+ η

(
λm
λn

)2

+
g↑↓

2πsL

(
1− µ+

~ω

)]
ωL = 0,

(15)

where c± ≡ (cl ± cr)/2 and µ± ≡ (µl ± µr)/2.
In the good spin sink case, µ± = 0, the last two equa-

tions above lead immediately to ω = 0 and c+ = 0. The
remaining equation gives

cl =
ς∆T/L

G+G∗
= −cr. (16)

The spin currents at the two interfaces (which turn out
to be purely thermal and equivalent) are thus given by

jx = − ς∆T/L

1 +G∗/G
, (17)

and vanish when either λcx → 0 (strong condensate-
cloud interaction regime, where λm → λcx) or λn → 0
(strong magnon damping regime, where λm → λn), since
G∗ ∝ 1/λm → ∞. As, by decreasing field B, we go
deeper into the condensate phase at a fixed T , and nc
is monotonically increasing, λcx decreases and thus the
magnitude of jx is reduced (see Fig. 2, where we took into
account the dependence of λm on B but ignored the de-
pendence of other quantities on B, which is valid as long
as T � K [20]). jx is largest at the transition point to
the normal state and is given by Eq. (17) with λm → λn.
Note that although the superfluid velocity vc vanishes at
both interfaces, it is nonzero inside the ferromagnet (at
distances beyond λm from the interfaces), according to
Eq. (13):

vc =
2ηλmcl

~
=

2ηλm
~

ς∆T/L

G+G∗
. (18)

Already in this simple case we encounter the conveyor-
belt physics, as the superfluid spin current ncvc in the
bulk counteracts the diffusive thermal flux −ς∆T/L and

FIG. 3. In the presence of a temperature gradient ∆T , the
magnon chemical potential µ(x) deviates near the interfaces
from its zero bulk value in the ferromagnet (YIG). This is
accompanied by the electronic spin accumulation build-up in
adjacent metals (Cu, treated as a poor spin sink). The spin
accumulation µl at the left interface exerts a torque on the
magnetic order parameter, twisting it in the opposite direc-
tion with respect to the one induced by µr = −µl at the
right interface. In the mirror-symmetric case, the precession
frequency ω vanishes. The condensate, jc, and thermal, jx,
contributions to the spin currents are plotted for λn = λcx.

reduces the net spin Seebeck effect as measured at inter-
faces.

In the opposite limit of the poor spin sinks, we still
find ω = 0 and c+ = 0, so that µ+ = 0, while

µl =
ς∆T/L

G∗ + (1 +G∗/G)g↑↓nc/2π~s
= −µr. (19)

This spin accumulation vanishes when either λcx → 0 or
λn → 0 and decreases with decreasing field B, displaying
an analogous behavior to the one of the spin current at
the interfaces in the good spin sink case (see Fig. 2).
While the total current now vanishes at the interfaces, jx
and vc are both nonzero in the ferromagnet (see Fig. 3).
Discussion and conclusions.—In this work, we con-

structed a hydrodynamic theory which describes the in-
teractions between thermal and condensed magnons in
an easy-plane magnetic insulator in the presence of a
thermal gradient. We predicted that spin superfluidity
can be induced by sweeping the external magnetic field
and experimentally probed via spin Seebeck effect. We
estimate that for YIG this drop should be observable
[20]. Although we have explicitly considered a ferromag-
netic insulator, we anticipate, according to Refs. [26] and
[27], qualitatively similar behavior also for antiferromag-
nets. Future works should more systematically address
the magnon-phonon relaxation mechanisms and study
the role of magnons in the net heat transport. Non-
linear response, in the contexts of dynamic instabilities
[16] and pinning by parasitic in-plane anisotropies [28],
and higher-order manifestations of the microscopic irre-
versibility [29] of the coupled spin and heat transport will
be addressed elsewhere.
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[11] T. Giamarchi, C. Rüegg, C. and Tchernyshyvov, Nature
Phys. 4, 198 (2008), and references therein.

[12] S. O. Demokritov, V. E. Demidov, O. Dzyapko, G. A.
Melkov, A. A. Serga, B. Hillebrands and A. N. Slavin,

Nature 443, 430 (2006).
[13] S. A. Bender, R. A. Duine, and Y. Tserkovnyak, Phys.

Rev. Lett. 108, 246601 (2012).
[14] K. Uchida, H. Adachi, T. Ota, H. Nakayama, S. Maekawa

and E. Saitoh, Appl. Phys. Lett. 97, 172505 (2010).
[15] T. Holstein and H. Primakoff, Phys. Rev. 58, 1098

(1940).
[16] S. A. Bender, R. A. Duine, A. Brataas, and Y.

Tserkovnyak, Phys. Rev. B 90, 094409 (2014).
[17] A. Griffin, T. Nikuni and E. Zaremba, Bose-condensed

Gases at Finite Temperatures, Cambridge University
Press, Cambridge (2009).

[18] H. T. C. Stoof, J. Low Temp. Phys., 114, 11 (1999).
[19] L. D. Landau and E. M. Lifshitz, Statistical Physics, Part

2, 3rd ed., Course of Theoretical Physics, Vol. 9 (Perga-
mon, Oxford, 1980); T. L. Gilbert, IEEE Trans. Magn.
40, 3443 (2004).

[20] See Supplemental Material [url], which includes Refs. [21-
24]

[21] S. A. Bender and Y. Tserkovnyak, Phys. Rev. B, in press.
[22] S. A. Bender and Y. Tserkovnyak, Phys. Rev. B 91,

140402 (2015).
[23] C. Burrowes, B. Heinrich, B. Kardasz, E. A. Montoya, E.

Girt, Y. Sun, Y.-Y. Song, and M. Wu, Appl. Phys. Lett.
100, 092403 (2012).

[24] L. J. Cornelissen, J. Liu, R. A. Duine, J. Ben Youssef,
and B. J. van Wees, Nature Phys. 11, 1022 (2015).

[25] Y. Tserkovnyak, A. Brataas, G. E. W. Bauer, and B. I.
Halperin, Rev. Mod. Phys. 77, 1375 (2005).

[26] B. I. Halperin and P. C. Hohenberg, Phys. Rev. 188, 898
(1969).

[27] S. Takei, B. I. Halperin, A. Yacoby, and Y. Tserkovnyak,
Phys. Rev. B 90, 094408 (2014).

[28] E. B. Sonin, Advances in Physics, 59(3), 181 (2010).
[29] C. Wang and D. E. Feldman, Phys. Rev. B 92, 064406

(2015).


