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Determinations of the shear viscosity of trapped ultracold gases suffer from systematic, uncon-
trolled uncertainties related to the treatment of the dilute part of the gas cloud. In this work we
present an analysis of expansion experiments based on a new method, anisotropic fluid dynam-
ics, that interpolates between Navier-Stokes fluid dynamics at the center of the cloud and ballistic
behavior in the dilute corona. We validate the method using a comparison between anisotropic
fluid dynamics and numerical solutions of the Boltzmann equation. We then apply anisotropic fluid
dynamics to the expansion data reported by Cao et al. In the high temperature limit we find
η = 0.282(mT )3/2, which agrees within about 5% with the theoretical prediction η = 0.269(mT )3/2.

Introduction: A number of studies have been devoted
to extracting the transport properties of dilute atomic
Fermi gases. Quantities of interest include the shear vis-
cosity [1–11], the bulk viscosity [12], and the spin diffu-
sion constant [13–15]. These transport coefficients pro-
vide valuable information about the nature of the low en-
ergy degrees of freedom. Strongly correlated Fermi gases
also contribute important insights into the transport
properties of other quantum many-body systems, such
as high-Tc superconductors or the quark-gluon plasma
[16–18]. Truly model-independent determinations of the
transport coefficients of trapped atomic gases have so far
been precluded, however, by the fact that there is a tran-
sition from fluid dynamical behavior in the dense part
of the cloud to weakly collisional kinetic behavior in the
dilute corona.

Consider, for example, a unitary Fermi gas expand-
ing after release from a deformed harmonic trap [19].
Fluid dynamics predicts that the difference in pressure
gradients along the short and the long axis of the cloud
translates into a larger acceleration along the short direc-
tion. This implies that the aspect ratio AR of the cloud,
which is initially much smaller than one, quickly grows
and eventually exceeds unity, as was first observed by
O’Hara et al. [20]. Shear viscosity η slows down the ac-
celeration in the transverse direction, and measurements
of AR(t) for different initial values of T/TF , where TF
is the Fermi temperature, can be used to constrain the
dependence of η(n, T ) on density n and temperature T .
This task is simplified by the scale invariance of the uni-
tary Fermi gas, which implies that the bulk viscosity van-
ishes, and that η = (mT )3/2f(n/(mT )3/2), where f(x) is
a universal function. Note that we use units h̄ = kB = 1.

The natural tool for extracting η(n, T ) is the Navier-
Stokes (NS) equation. The problem in determining
η(n, T ) is that AR(t) is a global property of the cloud, and
that the NS equation breaks down in the dilute corona,
where the mean free path is large compared to the density
and the pressure scale heights. Because the total number
of particles in the corona is small, one might hope that
this does not lead to serious difficulties. Unfortunately,
this is not the case: The rate of dissipative heating is

q̇ = η
2 (σij)

2, where σij = ∇iuj + ∇jui − 2
3δij

~∇ · ~u is

the strain tensor, and ~u is the fluid velocity. In the di-
lute limit kinetic theory predicts that the shear viscosity
is only a function of temperature, and not of density,
η ∼ (mT )3/2 [21, 22]. The square of the strain ten-

sor scales as (σij)
2 ∼ τ−2exp , where τ−1exp = ~∇ · ~u is the

expansion rate of the fluid. This means that the local
heating rate is q̇ ∼ T 3/2τ−2exp ∼ T 3, independent of den-
sity [37]. Thus, integrating the NS equation over volume
leads to the prediction that dissipation produces an infi-
nite amount of heat. This result is, of course, an artifact
of applying the NS equation in a regime where the mean
free path is large. It implies, however, that any attempt
to address this problem by imposing a cutoff radius will
give results that are very sensitive to the precise nature
of the cutoff.

Prior work: Previous analyses have dealt with this is-
sue in a variety of ways. In [2] it was argued that col-
lective mode and expansion experiments primarily con-
strain the trap integral of the shear viscosity, αn ≡
1
N

∫
d3x η(n0(~x), T0), where N is the total number of par-

ticles, n0(~x) is the initial density, and T0 is the initial
temperature. The integration volume was restricted to
lie within the surface of last scattering, defined using the
mean free path computed in kinetic theory. Later, Cao
et al. [4] assumed that the local shear viscosity scales as
η(~x) = n(~x)[η(0)/n(0)], so that αn = η(0)/n(0) is deter-
mined by η and n at the trap center. This assumption
has a number of nice properties, because for a scaling ex-
pansion η(0)/n(0) is approximately independent of time.
In the more recent work by Joseph et al. [10] the inte-
gration volume was restricted to the interior of an ellip-
soid. The length of the principle axes was taken to be
Ri = γ〈x2i 〉1/2, where 〈x2i 〉1/2 is the the rms radius, and γ
is a temperature-independent coefficient that was fitted
in order to reproduce the theoretically computed high-T
limit of the shear viscosity, η = 15

32
√
π

(mT )3/2 [21, 22].

Anisotropic fluid dynamics: These methods are clearly
not fully satisfactory, because they involve model as-
sumptions for which the error cannot be quantified. For
example, the analysis of Cao et al. gives η = 0.33(mT )3/2

in the high temperature limit T � TF [4]. This agrees
to within 25% with the theoretical prediction, but there
is no a priori estimate of the theoretical error related to
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FIG. 1: This figure shows the aspect ratio AR of an expanding
unitary Fermi gas as a function of time t in units of the in-
verse mean trap frequency ω̄−1. The three curves correspond
to three different initial temperatures T/TF = 0.79, 1.11, 1.54
(from top to bottom). The solid lines show results ob-
tained using anisotropic fluid dynamics, and the points are
solutions of the Boltzmann equation obtained by Pantel et
al. [34]. The aspect ratio is defined using the rms radii,

AR = [〈x2〉/〈z2〉]1/2.

the assumption η(~x) = n(~x)[η(0)/n(0)]. Also, there is
no reliable method for estimating the systematic uncer-
tainty in the low temperature data obtained by Joseph
et al. [10].

A possible approach that resolves the difficulty is to
couple a fluid dynamical calculation for the center of the
cloud with a kinetic treatment based on the Boltzmann
equation for the dilute corona. However, this method is
computationally very demanding, and extensive studies
would be required to establish that the results are inde-
pendent of the prescription for switching between ther-
modynamic variables in fluid dynamics and distribution
functions in kinetic theory. A much simpler approach,
termed anisotropic fluid dynamics, was recently proposed
in [23]. This method has also been studied in connection
with relativistic heavy-ion collisions [24, 25]. The idea
is to include certain non-hydrodynamic variables in the
fluid dynamical description. In the limit of short mean
free paths, these variables relax to their equilibrium val-
ues on a microscopic time scale, and NS theory is recov-
ered. In the limit of long mean free paths, in contrast, the
non-hydrodynamic modes are approximately conserved,
and the additional conservation laws ensure a smooth
transition to free streaming.

The fluid dynamical variables describing a non-
relativistic fluid in the normal phase are the mass density
ρ, the momentum density ~π = ρ~u, and the energy density
E . The conservation laws can be written as

D0ρ = −ρ~∇ · ~u , (1)

D0ui = −1

ρ
(∇iP +∇jδΠij) , (2)

D0ε = −1

ρ
∇i
(
uiP + δEi

)
, (3)

where we have introduced the comoving time derivative

D0 = ∂0 + ~u · ~∇, the energy per mass ε = E/ρ, and the
pressure P . In NS theory the dissipative stress tensor is
given by δΠij = −ησij and the dissipative energy current
is δEi = ujδΠij . For simplicity, we neglect the effects of
heat conduction, which are not important for the physical
systems studied in this work [26]. The fluid dynamical
equations close once we provide an equation of state P =
P (E0), where E0 = E − 1

2ρ~u
2 is the energy density in the

fluid rest frame. The unitary Fermi gas is scale invariant
and P = 2

3E
0.

In anisotropic fluid dynamics we treat the components
of the dissipative stress tensor as additional, indepen-
dent, fluid dynamical variables. In the present case the
stresses remain diagonal and we only have to keep the
diagonal components of δΠij [38]. We define anisotropic
components of the pressure, Pa for a = 1, 2, 3, and write
δΠij =

∑
a δiaδja∆Pa, where ∆Pa = Pa − P . We also

define anisotropic components of the energy density Ea
such that E =

∑
a Ea. The anisotropic components of the

energy per mass satisfy the fluid dynamical equations [23]

D0εa = −1

ρ
∇i
[
δiauiP + (δEa)i

]
− P

2ηρ
∆Pa , (4)

where εa = Ea/ρ and (δEa)i = δiaujδΠij . To close the
fluid dynamical equations we have to provide an equation
of state. For a scale invariant fluid we have Pa(E0a) = 2 E0a
with E0a = Ea − 1

2ρu
2
a. Then P = 1

3

∑
a Pa satisfies the

isotropic equation of state and equ. (4) reproduces the
equation of energy conservation equ. (3) when summed
over a. Equations (1)-(4) can be solved using standard
techniques in computational fluid dynamics. We have
developed a code based on the PPM scheme of Colella
and Woodward [23, 26–28].

The precise form of the fluid dynamical equations (1-
4) can be derived using moments of the Boltzmann equa-
tion [23]. In particular, the new equation (4) arises from
taking moments with p2a/(2m), where pa is a Cartesian
component of the quasi-particle momentum. Note that
physically equ. (4) is a relaxation time equation for the
viscous stresses. To demonstrate the relation to the NS
equation we solve equ. (4) for ∆Pa order by order in the

small parameter Kn = (η/P )~∇ · ~u [39]. At leading order
we find δΠij = −ησij and, thus, recover NS theory [23].
This is true for any functional form of the shear viscosity
η(n, T ). In the opposite limit, Kn � 1, the components
of Ea are independently conserved. This corresponds to
the ballistic limit, because without collisions the compo-
nents of the internal energy corresponding to motion in
different directions are individually conserved.

Comparison to solutions of the Boltzmann equation:
Anisotropic fluid dynamics can be viewed as a low den-
sity regulator for the NS equation. The theory exactly
reduces to NS theory in a dense fluid, and the relax-
ation time equation ensures that in the dilute limit free
streaming is recovered. Given that the crossover between
these limits is smooth [29–31] we expect that anisotropic
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T/TF ωx/(2π) ωy/(2π) ωz/(2π) ωmag
z /(2π) N

0.79 5283 Hz 5052 Hz 182.7 Hz 21.5 Hz 4 · 105

1.11 5283 Hz 5052 Hz 182.7 Hz 21.5 Hz 5 · 105

1.54 5283 Hz 5052 Hz 182.7 Hz 21.5 Hz 6 · 105

TABLE I: Parameters for the experiments reported in [4].
The Fermi temperature is defined in terms of the geomet-
ric mean ω̄ = (ωxωyωz)

1/3 of the trap frequencies, TF =

(3N)1/3ω̄. After the optical trap is turned off, the gas ex-
pands in a magnetic bowl with frequencies ωmag

i . The effect
of ωmag

x,y is negligible, and only ωmag
z is given in the table.

fluid dynamics provides an accurate representation of ki-
netic theory at finite Knudsen number. Here we will ver-
ify this expectation by comparing numerical solutions of
anisotropic fluid dynamics and the Boltzmann equation.
The Boltzmann equation reads(

∂t + ~v · ~∇x − ~F · ~∇p
)
fp(~x, t) = C[fp] , (5)

where fp(~x, t) is the distribution function, ~v = ~∇pEp is
the quasi-particle velocity, Ep is the quasi-particle energy,
~F = −~∇xEp is a force, and C[fp] is the collision term.
For simplicity, we have assumed the system to be spin-
symmetric with f↑p = f↓p = fp. In the high-T limit Ep =

p2/(2m) and ~v = ~p/m [32]. In this limit the collision
term is dominated by two-body collisions and

C[f1] = −
∏

i=2,3,4

(∫
dΓi

)
w(1, 2; 3, 4) (f1f2 − f3f4) ,

(6)

where fi = fpi , dΓi = d3pi
(2π)3 and the transition rate is

given by

w(1, 2; 3, 4) = (2π)4δ
(∑

i

Ei

)
δ
(∑

i

~pi

)
|A|2 . (7)

The square of the scattering amplitude in the unitary
limit is given by |A|2 = 16π2/(q2m2) where 2~q = ~p2−~p1.
Numerical solutions of the Boltzmann equation for the
unitary Fermi gas using the test particle method were
obtained in [33, 34]. In the test particle method the dis-
tribution function is represented by a sum of delta func-
tions, which can be thought of as classical particles that
follow trajectories governed by Newton’s laws. Collisions
occur when the particles approach to within the scaled
geometrical cross section, where the scale factor is deter-
mined by the number of test particles.

A comparison between numerical results of anisotropic
fluid dynamics and solutions of the Boltzmann equation
is shown in Fig. 1 for three different values of T [40].
The parameters are given in Table I. The solutions of the
Boltzmann equation were obtained for the cross section in
the unitary limit. The shear viscosity in the anisotropic
fluid dynamics code is determined by using this cross sec-
tion together with the Chapman-Enskog method for solv-
ing the Boltzmann equation in approximate local equilib-
rium. The result of this calculation is η = 15

32
√
π

(mT )3/2
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FIG. 2: This figure shows the aspect ratio AR of an expanding
unitary Fermi gas as a function of time t in units of ω̄−1 for
three different initial temperatures T/TF = 0.79, 1.11, 1.54
(from top to bottom). The data are from Cao et al. [4]. The
solid lines show fits obtained using anisotropic fluid dynamics,
and the bands correspond to a ±15% uncertainty in the shear
viscosity. The aspect ratio is defined using a Gaussian fit to
two-dimensional densities.

[41]. The agreement between anisotropic fluid dynamics
and the Boltzmann equation is essentially perfect. This is
remarkable, because there are no free parameters, and, as
explained in the introduction, there are no well-behaved
solutions of the NS equation for η ∼ (mT )3/2.

One way to think about this is to note that it is pos-
sible to represent the Boltzmann equation as an infinite
set of moment equations. Standard fluid dynamics cor-
responds to truncating this expansion after the first five
moments, corresponding to the conserved quantities par-
ticle number, momentum, and energy. What we have
demonstrated is that adding only two additional mo-
ments, corresponding to anisotropic components of the
internal energy, dramatically improves the agreement be-
tween local moment equations and the underlying kinetic
theory for a fluid in which the density varies significantly.

Fits to high temperature expansion data: We have
shown that anisotropic fluid dynamics reproduces the
NS equation in the short mean free path limit, and ki-
netic theory with two-body scattering in the dilute limit.
The only input parameters are the equation of state and
the shear viscosity. This approach is therefore ideally
suited to determine the shear viscosity of the unitary
Fermi gas. In this section we illustrate the method by
reanalyzing the data of Cao et al. [4]. Cao et al. stud-
ied the expansion of the cloud for a range of energies
2.3NEF ≤ E ≤ 4.6NEF , where E is the total energy
of the cloud and EF = TF is the Fermi energy. This is
significantly above the critical energy Ec = 0.7NEF for
the superfluid transition [35], and we can describe the
initial density profile as a Gaussian [26]. We will also
assume that the shear viscosity follows the high temper-
ature law η = η0(mT )3/2. We will check this assumption
below. Our goal here is to demonstrate that we can accu-
rately extract the high temperature shear viscosity from
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data. This result provides a crucial and indispensable
benchmark for any attempt to reliably extract the shear
viscosity near Tc.

Fits to the data based on anisotropic fluid dynamics
are shown in Fig. 2. We consider three different initial
temperatures, spanning about a factor of two. As noted
in [34] an important ingredient in obtaining a good fit
to the data is to follow the experimental procedure and
determine the aspect ratio from a Gaussian fit to the
two-dimensional column density n(x, z) =

∫
dy n(x, y, z).

Note that the need to perform a Gaussian fit is related
to viscous effects. In ideal fluid dynamics the evolution
preserves the Gaussian shape of the initial density dis-
tribution, and there is no difference between rms and
Gaussian fit radii. At T/TF = 0.79, 1.11, 1.54 we find
η0 = 0.266, 0.302, 0.288. The fits to the data for these
values of η0, together with ±15% error bands, are shown
in Fig. 2. There are some discrepancies at large t, but
this is the regime in which systematic errors in the mea-
surement of the aspect ratio are expected to be significant
[42].

We observe that as the temperature of the cloud
changes by a factor of 1.95, and the shear viscosity
changes by a factor 2.72, the variance of the extracted
values of η0 is only 6%. This places strong constraints on
deviations from the expected scaling behavior η ∼ T 3/2.
Combining all the data, and using a fit to the more gen-
eral functional form η = η0(mT )3/2(mT/n2/3)a, we find
a = 0.05± 0.1, consistent with a = 0 [43]. For a = 0 we
obtain η = 0.282(mT )3/2, which agrees to about 5% with
the theoretical prediction η = 0.269(mT )3/2 [21, 22, 36].
We note that the theoretical uncertainty inherent in the
use of anisotropic fluid dynamics, which can be estimated
from Fig. 1, is much smaller than that. Indeed, the dif-
ference between theory and experiment is consistent with
the statistical uncertainty of the fit, which is about 10%.

Conclusions and outlook: In this work we have demon-
strated that anisotropic fluid dynamics can be used to
make high precision, model-independent, determinations
of the shear viscosity of trapped atomic Fermi gases. The
key feature of the method is that it interpolates between

an exact realization of the Navier-Stokes equation in the
short mean free path limit and ballistic expansion in the
long mean free path limit. We have also shown that the
method provides a very accurate representation of the
Boltzmann equation in the limit of pure two-body scat-
terings. Together, these results imply that the method
incorporates the most general description of a dense fluid
in the normal phase, Navier-Stokes fluid dynamics, and
the correct theory of a dilute gas, kinetic theory with
two-body collisions.

In this work we have focused on high temperature data
and verified the theoretical prediction for η in this regime.
We have been able to extract, for the first time, the
shear viscosity coefficient without uncontrolled assump-
tions about dissipative effects in the dilute corona. This
is a crucial benchmark for the natural next step, which
is to reanalyze data near the superfluid transition [10].
This will require initializing the density profile for a non-
trivial equation of state, and extracting the full functional
dependence of η on n/(mT )3/2. In order to describe the
data below Tc the method has to be extended to super-
fluid hydrodynamics. In principle this is straightforward,
because in terms of fluid dynamics a superfluid can be
viewed as a mixture of a normal, viscous, fluid with an
inviscid fluid.

Finally, we emphasize that the method presented in
this work is quite general, and can be applied to a vari-
ety of physical problems. This includes problems in fluid
dynamics which involve the expansion into a vacuum, or
large changes in the density, so that the Knudsen number
of the flow varies by orders of magnitude. The basic idea
of the method can also be applied to determine other
transport coefficients, for example the spin diffusion con-
stant in trapped atomic gases [13].
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