
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Tunable Splitting of the Ground-State Degeneracy in Quasi-
One-Dimensional Parafermion Systems

Chun Chen and F. J. Burnell
Phys. Rev. Lett. 116, 106405 — Published 10 March 2016

DOI: 10.1103/PhysRevLett.116.106405

http://dx.doi.org/10.1103/PhysRevLett.116.106405


Tunable Splitting of the Ground-State Degeneracy in Quasi-One-Dimensional Parafermion Systems

Chun Chen1, ∗ and F. J. Burnell1, †

1School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
(Dated: February 17, 2016)

Systems with topologically protected ground-state degeneracies are currently of great interest due to their
potential applications in quantum computing. In practise this degeneracy is never exact, and the magnitude of
the ground-state degeneracy splitting imposes constraints on the timescales over which information is topologi-
cally protected. In this Letter we use an instanton approach to evaluate the splitting of topological ground-state
degeneracy in quasi-1D systems with parafermion zero modes, in the specific case where parafermions are real-
ized by inducing a superconducting gap in pairs of fractional quantum Hall (FQH) edges. We show that, like 1D
topological superconducting wires, this splitting has an oscillatory dependence on the chemical potential, which
arises from an intrinsic Berry phase that produces interference between distinct instanton tunneling events.
These Berry phases can be mapped to chiral phases in a (dual) quantum clock model using a Fradkin-Kadanoff
transformation. Comparing our low-energy spectrum to that of phenomenological parafermion models allows
us to evaluate the real and imaginary parts of the hopping integral between adjacent parafermionic zero modes
as functions of the chemical potential.

PACS numbers: 74.78.Fk, 73.43.−f, 03.65.Vf, 71.10.Pm

The possibility of creating bound states with exotic non-
Abelian statistics at the ends of quasi-1D systems is an excit-
ing prospect that has been developed both theoretically [1–16]
and experimentally [17–25] over the past few years. These
bound states are known to generate a topological ground-state
degeneracy. In arrays of 1D systems, states in the resulting
low-energy Hilbert space can be entangled and manipulated
by braiding processes [26], which are (at least in principle)
robust to noise. Such systems have drawn significant interest
due to their potential to realize topological quantum computa-
tion [27–31].

Parafermion bound states [6–16], which have k (k >
2) topologically degenerate ground states, are particularly
promising for such quantum computing applications: In com-
parison to Majorana bound states (k = 2), parafermion bound
states allow for a denser (albeit non-universal) set of compu-
tational gates, and are believed to be intrinsically more robust
to environmental noise [8–10, 32]. Parafermions are signifi-
cantly more challenging to produce than their Majorana coun-
terparts: Most proposals entail generating them as defects in
2D Abelian FQH states, in ways that have yet to be carried
out experimentally. However, their non-Abelian statistics are
also more complex than for Majoranas, which makes realiz-
ing them a particularly exciting prospect. It is noteworthy that
parafermions cannot be realized in strictly 1D wire models
according to the results by Refs. [33, 34].

For bound states confined to the endpoints of a system of fi-
nite length L, the topological ground-state degeneracy is split
by an amount ∆E ∼ e−L/ξ, where ξ is proportional to the
correlation length in the bulk of the system, causing superpo-
sitions of ground states to decohere over time. Though the-
oretically it is possible to make this splitting as small as re-
quired by making L large, there are definite advantages when
this splitting can be made small even for modest-length sys-
tems. For 1D topological superconducting wires [35, 36] or
spin-Hall based superconductors [2, 5], this can be achieved

by small adjustments in the appropriate chemical potential,
since in addition to the exponential fall-off in L the split-
ting has an oscillatory dependence on the Fermi momentum
via ∆E ∼ e−L/ξ cos(kFL). The observed oscillations of
the splitting of the zero-bias conductance peaks [20] can be
viewed as evidence of Majorana bound states [35–39].

Despite the publicity it has had in Majorana systems [40–
43], little attention has been given to the ground-state split-
ting in parafermion systems. Specifically, one might wonder
whether these exhibit an analogue of the oscillatory cos(kFL)
term. In this Letter, we calculate the splitting of the topo-
logical ground-state degeneracy in parafermion platforms ob-
tained by inducing superconductivity or ferromagnetism at
certain types of edges in FQH states [8–13]. Following
Ref. [36] in the Majorana case, we perform this calculation
using a bosonised description of the strongly interacting 1D
system, in which the splitting of the ground-state degeneracy
is obtained by an instanton calculation in the resulting sine-
Gordon model. Interestingly, as in the Majorana case we do
find oscillations in the splitting as functions of chemical po-
tential or applied magnetic field. These intriguing oscillations
result from a Berry phase term in the generic sine-Gordon ac-
tion. We also use our calculation to deduce the magnitude and
phase of the hopping coefficients that arise most naturally in
parafermion chains, such as those studied by Refs. [6, 12, 44–
47].

Model of parafermion zero modes.—Several groups [8–13]
have suggested that parafermion zero modes can be generated
in systems with counterpropagating chiral edges separating
two FQH regions with opposite g-factors. The edge of interest
consists of one right-moving and one left-moving mode with
opposite spin polarizations. Two types of electron tunneling
processes can open a gap at this edge: Inducing superconduc-
tivity (SC) generates a Cooper-pairing ∆(ψ†L,↓ψ

†
R,↑ + H.c.),

while spin backscattering B(ψ†L,↓ψR,↑+ H.c.) can be induced
by tunnel-coupling the edge to a ferromagnet (FM). Any in-
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terface between these different types of induced gaps will host
parafermion bound states (Fig. 1).
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FIG. 1: (color online). Schematic spatial profiles of the proximity-
induced gaps ∆(x) and B(x) for the FM-SC-FM setup.

To describe this system, it is convenient to bosonise the two
edge modes, representing the right- (left-) moving electrons
as ψ†R/L ∼

1√
2πnς

e−inϕR/L , where ϕR/L are chiral bosonic
fields, and 1/n is the filling fraction of the corresponding FQH
bulk regions. Here ς is related to the inverse energy cutoff
(Ecutoff) of the bosonised theory via ς ∼ v~/Ecutoff, where v
is the velocity of the edge modes.

The two backscattering terms are most simply expressed in
the basis φ = 1

2 (ϕR,↑ + ϕL,↓) and θ = 1
2 (ϕR,↑ − ϕL,↓).

These non-chiral fields are related to the charge density ρC
and spin density ρS via ρC = 1

π∂xθ and ρS = 1
π∂xφ. In this

bosonised basis, the two backscattering terms take the form
∆(ψ†L,↓ψ

†
R,↑+H.c.) ∼ ∆ sin(2nφ) andB(ψ†L,↓ψR,↑+H.c.) ∼

B sin(2nθ), and the 1D parafermion system is described by
the following Euclidean sine-Gordon action [8–12, 48–50]:

SE =

∫
dτdx{i~n

π
∂xθ(x, τ)∂τφ(x, τ)−µ(x)

π
∂xθ(x, τ)

+
~nv
2π

(∂xθ(x, τ))
2
+
B(x)

πnς
[sin(2nθ(x, τ))+1]

+
~nv
2π

(∂xφ(x, τ))
2
+

∆(x)

πnς
[sin(2nφ(x, τ))+1]}. (1)

Here µ represents the chemical potential and B,∆ are energy
gaps induced by spin- and charge-backscattering processes,
respectively. The commutation relation [φ(x), θ(x′)] =
iπnΘ(x − x′) dictates that only one of the two possible gap-
ping terms can have a non-vanishing expectation value at a
given spatial position. However, if a region where ∆ ∼ ~v/ς
can be sandwiched between two regions where B ∼ ~v/ς ,
parafermion bound states arise at the interfaces between them.
In the bosonised picture, the resulting topological ground-
state degeneracy is manifest in the 2n values of φ for which
the sine term is minimized [7–12].

In the following, we consider the FM-SC-FM heterostruc-
ture shown in Fig. 1, on which we take B = 0 (∆, µ = 0)
in the SC (FM) region |x| < L/2 (|x| > L/2). In the FM
regions |x| > L/2, the field θ is therefore pinned to one of the
potential minima, and φ is strongly fluctuating as required by
the commutation relations. As we show in [51], under these
conditions the FM regions do not contribute to the ground-
state energy splitting, and after integrating out θ we obtain the

following effective action for the SC region:

Sφ =

∫ Tτ
2

−Tτ2
dτ

∫ L
2

−L2
dx{ ~n

2πv
(∂τφ(x, τ))2 +

~nv
2π

(∂xφ(x, τ))2

+
∆

πnς
[sin(2nφ(x, τ)) + 1] + i

µ(x)

πv
∂τφ(x, τ)}. (2)

In the ground states of this reduced system the φ field is also
approximately pinned at one of the 2n inequivalent local min-
ima φmin of the sine potential; we will take ∆ to be suffi-
ciently large that these low-energy states are well separated
from the rest of the spectrum. The fluctuation-induced split-
ting between the 2n otherwise degenerate ground states is then
determined by the amplitude for tunneling between adjacent
local minima.

The last term in Eq. (2) plays the role of a topological Berry
phase term SB-p, contributing to the net action only for field
configurations which start and end at different values of θ (i.e.
only for instantons). It introduces oscillations in the splitting
of the ground-state degeneracy as the chemical potential µ is
varied. To the best of our knowledge, SB-p was not included in
previous studies of instantons in the bosonised periodic sine-
Gordon model, which considered the case µ = 0 [36, 50, 52].

Instanton calculation of level splitting.—For the sine-
Gordon model described by Eq. (2), the minima of the poten-
tial term are at φmin = − π

4n + jπ
n where j = 0, 1, . . . , 2n− 1,

with the j-th ground state denoted by |j〉. The classical
soliton solution interpolating between vacua at j πn −

π
4n and

(j ± 1)πn−
π
4n has the form [53–55]:

φsol(τ) = − π

4n
+ j

π

n
± 2

n
arctan[eω(τ−τ0)], (3)

where ω = 2
√

∆v/(~ς) > 0. To a good approximation, we
may neglect spatial variations in the instanton solution due to
boundary effects [51].

Following Refs. [52, 56–59], the amplitudes for the one-
instanton and one-anti-instanton processes are:

〈j|e−HφTτ/~|j ∓ 1〉o.i.

=
(
N e−ω̃Tτ/2

)(√ v

L

√
S0

2π~
e−S0/~∓iγ

)
√
ωTτ . (4)

Here S0+(−)i~γ is the effective action of an instanton (anti-
instanton) tunneling event (with small quantum corrections
omitted [51]), where the imaginary contribution γ stems from
SB-p, and ~ω̃/2 stands for the zero-point energy of the 1D har-
monic oscillator. In terms of the parameters in Eq. (2), we
have S0 = 2~ωL

nπv , γ = µL
~nv . As anticipated, the amplitude for

tunneling vanishes exponentially with the wire length L pro-
vided the bulk is gapped (i.e. ∆ 6= 0). More significantly, we
now perceive the importance of the Berry phase term, which
contributes a different net phase to the amplitude for instanton
and anti-instanton processes.

The prefactor K =
√
vωS0/(2π~L) is the Fredholm de-

terminant describing Gaussian fluctuations about the saddle-
point solution (3). This determinant is sensitive to spatial fluc-
tuations in the SC region, and its scaling with L is sensitive
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to the choice of boundary conditions (BCs). As shown in
[51], for Neumann-type BCs appropriate to the setup shown
in Fig. 1, this prefactor is independent of L, in agreement with
existing work on Majorana bound states [35, 37, 60]. For the
energy splitting in periodic BCs relative to antiperiodic ones,
on the other hand, the prefactor contains an extra factor of 1√

L
[52]. Fig. 2 compares this prediction to numerical values for
the energy splitting in the Majorana nanowire for both BCs.

� � � � � � � � � �
� �

� �

� �

�

�

�

( a )

 D e v i a t i o n s  f r o m  l i n e a r  f i t t i n g  f o r  O B C
 D e v i a t i o n s  f r o m  l i n e a r  f i t t i n g  f o r  D W s

ln(
E sp

litt
ing

)�c
*L

�
d

� � � � � � � � � �
� �

� �

� �

�

�

�

( b )

 D e v i a t i o n s  f r o m  l i n e a r  f i t t i n g  f o r  P B C - A P B C
 f l n ( L ) 	 � � � � * l n ( L ) � � � � � �

ln(
�E

spl
itti

ng)�
c'*

L�
d'

L

FIG. 2: (color online). Numerical results for the oscillatory zero-
energy splitting as a function of L in the 1D nanowire models hosting
Majorana bound states [1, 3, 4], for (a) open and domain-wall BCs,
and (b) periodic versus antiperiodic BCs (PBC-APBC). (Recall that
for a Majorana SC ring, the ground state with PBC (APBC) is a
parity-even (parity-odd) state.) The term linear in L has been sub-
tracted off in both cases, leaving a result independent of L in (a), and
depending logarithmically on L in (b).

Armed with one-instanton solutions, the total instanton
contribution is obtained using a dilute instanton gas approx-
imation [57], which gives:

〈j+|e−HφTτ/~|j−〉 = N
∫ 2π

0

dζ

2π
eiζ(j−−j+)

× exp

[
− ω̃

2
Tτ + 2KTτe−S0/~ cos(ζ − γ)

]
. (5)

The cosine term can be viewed as arising from interference
between instanton and anti-instanton trajectories, for which
SB-p has the opposite phase.

In the presence of instanton tunneling events, the eigen-
states of Hφ are therefore Bloch-wave-like states of the form:

|ζ〉∝
(

1
2π

) 1
2
∑
j e
−iζj |j〉. Imposing 〈j+±2n|e−HφTτ/~|j−±

2n〉= 〈j+|e−HφTτ/~|j−〉 to account for the fact that only 2n
of these minima are physically distinct forces ζ to take on the
2n discrete values π

nqφ, with qφ = 0, 1, . . . , 2n − 1, which
gives the 2n states:

|qφ〉 ∝
(

1

2n

) 1
2

2n−1∑
j=0

e−i
π
n qφj |j〉. (6)

From Eq. (5), the energies of these states are, up to an overall

constant,

E(qφ) = −2~ω
π

√
1

n
e−S0/~ cos

(
π

n
qφ −

µL

~nv

)
, (7)

where qφ is the generalised charge parity conjugate to the dis-
crete, compact variable φmin. This form agrees with the gen-
eral result of Ref. [61] for the energies of anyon pairs:

E(qφ) =

2n−1∑
a=0

(
Γa[Fαaαqφ

]αα + H.c.
)
, (8)

where α denotes the parafermion bound states, and F is a
part of the topological data. For the case at hand the possible
choices of F are described in Ref. [62]; taking [Fαaαqφ

]αα =

ei(π/n)[(a·qφ) mod 2n] and Γa = −~Ke−S0/~−iγδa,1 recovers
the form (7) for the energies of these ground states.

It is instructive to check Eq. (7) for the case of Majorana
fermions (n = 1), where the splitting can be calculated di-
rectly from a quadratic fermion Hamiltonian [5, 35, 40, 41].
The relevant calculation in the quantum Hall systems de-
scribed here can be carried out as for the nanowire case
[35, 37] – see Refs. [51, 60]. The result is

Eq = −C ∆B
∆ + B

e−
∆L
~v cos

(
πq − µL

~v

)
, q = 0, 1, (9)

where C is a constant of order unity. The coefficient of the
decaying exponential differs from Eq. (7), since for n = 1,
S0/~ =

(
∆L
~v
)

4
π

√
~v/(∆ς). However, in the instanton cal-

culation of the exponential term we neglect all modes above
the gap set by ∆; hence the cutoff energy ~v/ς should not be
much larger than ∆. Further, the tunneling process requires
the presence of virtual fluctuations up to an energy of ap-
proximately ∆, so the cutoff energy should also not be much
smaller than ∆. The factor 4

π

√
~v/(∆ς), which parameter-

izes the difference in the exponential decay lengths from the
two calculations, is therefore a constant of order 1. Parallel
reasoning applies to the comparison of the prefactors. Re-
markably, the argument of the cosine term agrees exactly with
our instanton calculation, suggesting that this oscillatory de-
pendence on µ is insensitive to the BCs and to the various
approximations being made.

We note that the preceding analysis also applies to the case
B > 0,∆ = 0 by taking φ 
 θ and replacing the chemical
potential term with a magnetic field term of the form −hπ∂xφ.
Therefore the oscillatory dependence of the ground-state en-
ergy splitting on chemical potential or magnetic field is a rel-
atively ubiquitous feature of parafermion zero modes.

Hopping in parafermion chains.—One interesting applica-
tion of our calculation is that it allows us to infer the phase
of intrawire parafermion hopping terms. This is of particu-
lar interest as chains of coupled parafermions can be used to
generate even more exotic topological phases [12, 46].

In the setup we consider, the parafermion bound states can
be described by operators α(†)

L , α
(†)
R which annihilate (create)
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parafermion zero modes at the left and right endpoints of the
SC region, respectively, and satisfy the relations

α2n
L/R = 1, α†L/R = α2n−1

L/R , and αLαR = αRαLe
iπn , (10)

which are sufficient to ensure that these bound states have
“parafermionic” non-Abelian statistics [7–11].

In terms of the bosonised fields θ and φ, we have α†LαR =
ei
π
n (q−1/2), where q = n

π (θ(L2 ) − θ(−L2 )) is the total charge
in the SC segment modulo 2 [8–11]. From the commutation
relation between φ and θ, it follows that

(α†RαL)φ(α†LαR) = φ+
π

n
, (α†LαR)φ(α†RαL) = φ− π

n
,

which carrying out precisely the tunneling processes whose
matrix elements we have just evaluated.

The low-energy Hamiltonian describing the parafermion
tunneling between the two endpoints is therefore

HA = tα†LαR + t∗α†RαL.

Its eigenstates are labeled by an integer q = 0, 1, 2, . . . , 2n−1,
and satisfy [8–11]

α†LαR|q〉 = −eiπn (q− 1
2 )|q〉, α†RαL|q〉 = −e−iπn (q− 1

2 )|q〉.
(11)

Note that Eqs. (6) and (11) together also fix the phase associ-
ated with the action of the parafermion hopping term on the
eigenstates of φ: α†LαR|j〉 = −e−i π2n |j + 1〉, α†RαL|j〉 =
−e+i π2n |j − 1〉. The corresponding energies—which are pre-
cisely the energies that we have just obtained with our instan-
ton calculation—are:

E(q) = −2
√
t2< + t2= cos

[
π

n

(
q − 1

2

)
+ ϑ

]
, (12)

where we have defined tanϑ = t=/t<.
Comparing Eqs. (7) and (12) allows us to constrain t< and

t=. For Majorana fermions (i.e. n = 1), there is an additional
constraint: Since α†R/L = αR/L, the two terms in Eq. (11) are
not independent. This forces t< = 0 (i.e. ϑ = ±π/2), and
t= = ±~Ke−S0/~ cos[µL/(~nv)]. For n > 1 there is no such
a constraint; however, in these cases matching the eigenvalues
of both H and the operator α†LαR = ei(θ(

L
2 )−θ(−L2 )−π/(2n))

fixes ϑ, such that

t< = ±~Ke−S0/~ cos[π/(2n)− µL/(~nv)], (13)

t= = ±~Ke−S0/~ sin[π/(2n)− µL/(~nv)]. (14)

Using the analogous approach for an SC-FM-SC system (with
µ⇒ h,∆⇒ B) gives the analogous conclusion.

It is worth stressing that even at vanishing µ (or h), for n >
1 the hopping parameter t is complex with ϑ = π/(2n). This
suggests that the proposal for universal quantum computing
by manufacturing Fibonacci anyons in coupled parafermion
chains [12, 44, 46, 47] is better achieved in systems with-
out finite chemical potential or magnetic field. More specif-
ically, the µ-dependent contribution to ϑ in Eqs. (13) and

(14) corresponds to a chiral phase [63–66] in the quantum
clock model. To be concrete, a system of 2N tunnel-coupled
parafermion zero modes is dual (via the Fradkin-Kadanoff
mapping [6, 47, 67]) to an N -site chiral quantum clock
chain, where with appropriate conventions hopping across a
SC (FM) region maps to the transverse field (ferromagnetic
clock) coupling. Under duality, the phases of the parafermion
hopping terms t map to a chiral phase of±ei hL~nv for the ferro-
magnetic clock coupling, as well as a chiral phase of ±ei

µL
~nv

for the transverse field term. Notice that the oscillatory depen-
dence of the ground-state degeneracy splitting on the chiral
phases and the system’s size has been observed numerically
for these chiral clock systems [47] recently.

In summary, our non-perturbative calculation shows that it
is possible, in principle, to tune the magnitude of the ground-
state splitting in parafermion systems (as well as the phase
of the parafermion hopping parameter, for n > 1) by means
of a chemical potential or an external magnetic field due to
interference between distinct instanton trajectories resulting
from a topological term in the effective action. Because the
period of the resulting oscillations is given by µL/(~nv) (or
hL/(~nv)), this splitting can be fine-tuned with relatively
small changes in µ (or h). As for Majoranas, we anticipate
that this fact will be both of practical use to achieve quantum-
coherent systems, and a potential signature of the existence
of parafermions in these systems. Finally, our results might
also be applicable to the spin-unpolarized ν = 2/3 FQH het-
erostructures proposed by Refs. [12, 13].
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