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We present in this Letter a novel small set of ordered structures (SSOS) method that 

allows extremely efficient ab initio modeling of random multi-component alloys. Using 

inverse II-III spinel oxides and equiatomic quinary bcc (so-called high entropy) alloys as 

examples, we demonstrate that a SSOS can achieve the same accuracy as a large 

supercell or a well-converged cluster expansion, but with significantly reduced 

computational cost. In particular, because of this efficiency, a large number of quinary 

alloy compositions can be quickly screened, leading to the identification of several new 

possible high entropy alloy chemistries. The SSOS method developed here can be 

broadly useful for the rapid computational design of multi-component materials, 

especially those with a large number of alloying elements, a challenging problem for 

other approaches. 
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Ab initio modeling based on density functional theory (DFT) is a powerful tool that 

has greatly accelerated the design and discovery of materials [1-5]. The recently 

developed ab initio evolutionary methodology [6] further enables crystal structure 

prediction without any experimental input, making truly predictive materials design 

feasible. Despite its great success, extending ab initio calculations to multi-component 

alloys exhibiting configurational disorder remains a difficult problem. To date, the three 

most widely used techniques for modeling disordered alloys are the single-site coherent 

potential approximation (CPA) [7], the special quasirandom structure (SQS) approach 

[8], and the “coarse-graining” cluster expansion (CE) method [9]. While CPA can 

elegantly treat both chemical and magnetic disorder (e.g. paramagnetic state) in random 

alloys at arbitrary composition, its mean-field nature limits its application to systems 

where local environmentally-dependent effects such as local displacements of atoms 

away from their ideal lattice positions are insignificant. A SQS represents the best 

possible periodic supercell that mimics the local pair and multisite correlation functions 

of a random alloy under the constraint of a given unit cell size N. Due to the O(N3) 

scaling of traditional DFT methods, small-unit-cell SQSs are preferred for computational 

efficiency. To date, SQSs with N≤36 have been successfully generated for random binary 

and ternary alloys [8,10-14]. However, with increasing number of alloying elements, it 

becomes increasingly difficult to find a small-sized SQS that can still adequately mimic 

the statistics of a random alloy due to the large number of correlation functions that need 

to be reproduced (see Fig. 1). Finally, while a CE is decidedly powerful and is capable of 

capturing short-range order effects at finite temperatures when used as the basis for 

canonical Monte Carlo simulations, the parameterization of a multi-component CE can be 
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computationally very expensive. To the best of our knowledge, no application of the CE 

technique to quaternary, quinary and higher-order alloy systems has yet been reported in 

the literature. 

In this Letter, motivated by the well-known Gaussian quadrature rule for numerical 

integration that approximates a definite integral as a weighted sum of function values at 

specific points, we propose to calculate a physical property f of a random alloy from a 

weighted average of the properties of a small set of ordered structures (SSOS) as: 
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To find the optimal SSOS and the corresponding weights for a given random alloy, 

we resort to the multi-component CE technique [9]. For a M-component alloy containing 

N lattice sites, we assign a pseudo-spin variable Si to each site, which can take the value 

between 0 and M-1 depending on which element occupies site i. The atomic 

arrangements on an underlying parent lattice can thus be completely characterized by the 

vector σ={S1, S2, …, SN}. We further define a cluster α as a group of k lattice sites, where 

k=1, 2, 3, 4… indicates single site, pair, triplet, and quadruplet cluster, etc. Formally, the 

dependence of a scalar property f on lattice configuration σ  can be expanded as: 
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Here, the vector s is called a “decoration” that specifies the type of point function 

associated with each site in cluster α. s
αΦ , sJα  and sDα  denote the correlation function 

(see Ref. 12 for detailed definition), the effective cluster interaction (ECI), and the 

degeneracy factor for cluster α with decoration s, respectively. 0J  is the ECI for the 

empty cluster. For a truly random multi-component alloy, the ensemble average of its 

correlation function s

RαΦ  can be calculated analytically since there is no correlation in 

the occupation between various sites. We search for a SSOS and associated weights such 

that the weighted averages of their correlation functions match s

RαΦ  for as many 

clusters as possible. In the spirit of the SQS approach [8,10-14], we make a fundamental 

assumption that the relative importance of ECIs decreases with increasing cluster size and 

focus on the physically most relevant correlation functions between the first few nearest 

neighbors. 

To generate a SSOS-n×N set that contains n ordered structures each containing N 

atoms per cell, we exhaustively enumerate all possible combinations of n symmetrically 

distinct N-atom/cell structures based on an underlying parent lattice using the ATAT code 

[15]. For large N, a linearly scaling numeration algorithm recently developed by Hart and 

Forcade [16] can be used to overcome the combinatorial explosion and the associated 

increase in computational time to enumerate the structures associated with larger cells. 

Each structure in the SSOS must have the same alloy composition as that of the alloy of 

interest. For computational efficiency, both n and N should be as small as possible. For 

each candidate set of structures, we determine their optimal weights using least-square 

regression such that the periodicity error, which measures the deviation from random 
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correlation, is minimized for a specified set of clusters under the normalization 

constraint: 

2

1

( ) min
n

s SSOS s
i i R

s i

w α α
α

σ
=

⎛ ⎞Φ − Φ =⎜ ⎟
⎝ ⎠

∑∑ ∑                                                   (3) 

Among all enumerated candidate sets, the best SSOS is the one with the lowest 

periodicity error. The generation of a SSOS is thus an intrinsically two-step optimization 

process: the inner one is with respect to weights and the outer one is with respect to 

structure selection among a pool of small ordered structures. We note that such an 

optimization process may be valuable for identifying reference structures used in 

machine learning approaches as well. 

To test the validity of the SSOS approach, we first apply it to predict the relative 

stability of normal vs. inverse structures of MgAl2O4 and ZnAl2O4 spinel oxides [17]. In 

a normal II-III AB2O4 spinel, A2+ cations occupy one-eighth of the tetrahedral interstitial 

sites of the fcc oxygen sublattice, and B3+ cations occupy half of the octahedral 

interstices. When all the A cations exchange positions with the B cations, the spinel is 

referred to as ‘inverse’. To model the inverse spinel structure in which A and B cations 

are randomly distributed within the octahedral (B) sublattice, we have developed a 

SSOS-2×28 [18] and various SQS-N structures (with N=28, 56, 84 and 168 atoms per 

unit cell). Furthermore, we have constructed high fidelity CEs using 17 pair, 16 triplet, 

and 2 quadruplet interactions by fitting to DFT calculated total energies of 146 input 

structures. For MgAl2O4 and ZnAl2O4, the leave-one-out cross-validation (LOOCV) 

score is only 3.4 and 4.7 meV per AB2O4 formula unit (f.u.), respectively. The CE results 

are herein considered as ‘benchmarks’ against which the accuracy of SSOS can be 
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judged. For DFT calculations, we employ the all-electron projector augmented wave 

method [19] within the LDA, as implemented in VASP [20]. To fully consider the effects 

of local lattice relaxations, all structures are fully relaxed with respect to both cell-

internal and cell-external degrees of freedom according to quantum mechanical forces 

and stress tensors. More computational details can be found in the Supplementary 

Material [18]. 

Fig. 2 shows the disordering energies (defined as the total energy difference between 

the inverse and normal configurations) of MgAl2O4 and ZnAl2O4 calculated using the 

SSOS, SQS and CE methods. The ECIs of the CEs are also shown. Remarkably, by 

performing DFT calculations on only two 28-atom structures, our SSOS calculations give 

results in excellent agreement with those from the CE and the large 168-atom SQS, but 

with significantly lower computational cost. In contrast to metallic systems such as Nb-

Mo and Ta-W [11], the slow convergence of the SQS results with respect to N observed 

for spinel oxides is a consequence of the long-ranged pair interactions typical of 

Coulomb interactions in these materials (see Figs. 2a-b). It is worth noting that, compared 

with SQS-28, calculations using SSOS-2×28 lead to a greater than ten-fold reduction in 

computational error for disordering energy, but with only an approximately two-fold 

increase in computational effort. Here, by collaboratively employing several supercells of 

small size instead of a single large one to model the random state, the convergence with 

respect to cell size has been greatly accelerated, which can effectively overcome the 

limitation imposed by the O(N3) scaling of DFT. 

As our second example, we apply the SSOS method to model the random quinary 

body-centered cubic (bcc) alloy at the equiatomic composition, the so-called high-
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entropy alloys (HEAs) that have rapidly emerged as a new class of engineering materials 

due to their excellent physical and mechanical properties [21, 22]. Remarkably, a SSOS-

3×5 containing only three 5-atom/cell structures (Figs. 3a-3c) can already perfectly match 

the 20 pair correlation functions of the random alloy for the first- and second-nearest 

neighbors [18]. To archive the same level of accuracy in terms of the range of perfectly 

matched correlations in a single supercell, we find it necessary to use a much larger 125-

atom SQS (Fig. 3d), which has been developed in this study using the Monte-Carlo 

simulated annealing technique [12]. 

Using both the SSOS and SQS methods, we have performed DFT calculations on 12 

random quinary bcc alloys using VASP [20] with PAW-PBE pseudopotentials [23]. A 

plane-wave cutoff energy of 341.5 eV and dense Monkhorst-Pack k-point meshes are 

employed to guarantee high numerical accuracy. As shown in Figs. 3e and 3f, even a 

SSOS-3×5 can already provide results in excellent agreement with those obtained using a 

much larger 125-atom bcc SQS. The SSOS approach agrees quantitatively with SQS 

despite the significantly less computational cost of the former: the root-mean-square 

deviation (RMSD) of the formation energy and equilibrium volume of the 12 alloys is 

only 4.8 meV/atom and 0.028 Å3/atom, respectively. Here we define formation energy as 

the total energy difference between an alloy and the composition-weighted average of its 

constituent pure elements in their respective ground-state structures at T=0 K. 

For the comparison shown in Fig. 3, we only allow the unit cell volume to relax, 

with all atoms occupying their ideal bcc lattice positions. In a multicomponent solid 

solution, significant lattice distortion can occur due to the large size mismatch between its 

many constituent elements. Consequently, there can exist a large dispersion of nearest-
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neighbor bond lengths, the average of which corresponds to the average lattice. To 

further consider the effects of local lattice relaxations, we fully relax all atoms in a 

random bcc alloy from their ideal lattice sites into their equilibrium positions. We find 

that the results predicted by SSOS and SQS calculations remain in excellent agreement 

with each other even after full atomic relaxations (see Fig. S2). For obtaining the 

atomically relaxed formation energy, we estimate that the SSOS calculations are more 

than 40-fold faster than SQS calculations, although the RMSD between the two 

calculations is only 9.5 meV/atom. This good agreement confirms the suitability of using 

the SSOS approach for modeling local lattice relaxations in size-mismatched 

multicomponent alloys and predicting properties of these high-order alloys. 

The combined accuracy and high computational efficiency of the SSOS method 

make it possible to perform high-throughput screening of the phase stability of a large 

number of potential bcc HEA compositions with only limited computing resources. As a 

demonstration of the approach, we consider all possible equiatomic quinary alloys that 

can be formed from the 13 elements Al, Cr, Cu, Ir, Mo, Nb, Ni, Pd, Pt, Ta, Ti, V and W. 

Furthermore, all possible five-combinations of the eight refractory metals Hf, Mo, Nb, 

Ta, Ti, V, W and Zr are also considered. Here we use “instability energy” [24] to measure 

the phase stability of a bcc HEA defined as the total energy difference between an alloy 

and the ground state convex hull, which can be estimated using the Open Quantum 

Materials Database (OQMD) [25]. A large instability energy would indicate a high 

tendency towards ordering and thus low chance of obtaining a single phase solid solution. 

Furthermore, the bcc lattice should be energetically more favorable than other competing 

crystal structures such as face-centered cubic (fcc). For this screening, we consider the 
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relative lattice stability between fcc and bcc structures, each modeled using a SSOS-3×5 

[18]. As shown in Fig. 4, our SSOS calculations correctly predict the bcc structure to be 

more stable for the six experimentally synthesized bcc HEAs: Mo1Nb1Ta1V1W1 [26], 

Hf1Nb1Ta1Ti1Zr1 [27], Al1Nb1Ta1Ti1V1 [28], Mo1Nb1Ti1V1Zr1 [29], Al1Mo1Nb1Ti1V1 

[30] and Hf1Nb1Ti1V1Zr1 [31]. Among the 1337 HEA candidates screened, the top 2% 

most promising (having the lowest instability energies) bcc HEA compositions are 

reported in Table I. Four of them (Mo1Nb1Ta1V1W1 [26], Hf1Nb1Ta1Ti1Zr1 [27], 

Mo1Nb1Ti1V1Zr1 [29] and Hf1Nb1Ti1V1Zr1 [31]) have already been experimentally 

verified. The remaining 23 alloy compositions are thus new predictions that await 

experimental confirmation. 

In summary, here we propose a new method to predict the properties of random 

multi-component alloys using ab initio calculations. Instead of relying on a single large 

supercell to mimic the random state, we model a random alloy using a set of small 

ordered structures, whose weight-averaged properties approximate those of the truly 

random alloy. Due to the O(N3) scaling of DFT, the SSOS method has significant 

advantage in terms of computational efficiency, particularly for high-order alloy systems. 

Using inverse AB2O4 spinels and random quinary bcc alloys as examples, we 

demonstrate that the SSOS method can predict the energetics and structural properties of 

random alloys in excellent agreement with those obtained using much larger supercells, 

even when the effects of local lattice relaxations are accounted for. Since the SSOS 

method relies on small cells, it allows for the possibility of high-throughput DFT 

calculations of high-order multi-component systems such as high-entropy alloys and is 

ideally suited for use with more accurate but costly electronic structure approaches, such 
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as hybrid functionals [32] and GW [33]. Finally, the SSOS approach can be used to 

calculate any property that can be modeled by a short-range cluster expansion, such as 

bandgap, vibrational entropy and bulk modulus, and such should become a valuable tool 

for materials discovery of multi-component systems. 
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Table I. Top 2% most stable single-phase bcc HEA compositions identified from the 

present high-throughput screening. Phase stability of HEAs is ranked according to their 

fully relaxed instability energies. The four experimentally verified bcc HEA 

compositions are shown in bold. 

bcc HEAs Instability energy (eV/atom) 
Mo1Nb1Ta1Ti1W1 0.046 
Mo1Nb1Ti1V1W1 0.048 

Mo1Nb1Ta1V1W1 [26] 0.068 
Hf1Mo1Nb1Ti1Zr1 0.081 
Mo1Ta1Ti1V1W1 0.081 
Mo1Nb1Ta1Ti1V1 0.084 
Hf1Mo1Nb1Ta1Ti1 0.086 
Nb1Ta1Ti1V1W1 0.087 

Hf1Nb1Ta1Ti1Zr1 [27] 0.089 
Hf1Mo1Nb1Ti1V1 0.092 
Hf1Nb1Ta1Ti1W1 0.096 
Mo1Nb1Ta1Ti1Zr1 0.101 
Cr1Mo1Ti1V1W1 0.102 

Mo1Nb1Ti1V1Zr1 [29] 0.102 
Cr1Mo1Nb1V1W1 0.104 
Nb1Ta1Ti1W1Zr1 0.104 
Hf1Mo1Nb1Ti1W1 0.113 
Al1Mo1Ta1V1W1 0.114 
Hf1Mo1Ta1Ti1Zr1 0.115 
Cr1Mo1Nb1Ti1V1 0.115 

Hf1Nb1Ti1V1Zr1 [31] 0.116 
Cr1Mo1Ta1V1W1 0.117 

Hf1Mo1Nb1Ta1Zr1 0.118 
Cr1Nb1Ti1V1W1 0.118 

Mo1Nb1Ti1W1Zr1 0.121 
Cr1Mo1Nb1Ti1W1 0.123 
Al1Cr1Mo1V1W1 0.123 

 



 14

 

FIG. 1 Total number of correlation functions for a single cluster in high order multi-

component alloys. Results for the nearest-neighbor pair, triplet, and quadruplet cluster in 

a fcc lattice are shown as a function of the number of alloying elements. Unlike in a 

binary alloy where the point function is unique, many distinct decorations for a cluster 

exist in a multicomponent alloy. For example, for a M-component alloy, there are M(M-

1)/2 different types of decorations for each pair cluster. 
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FIG. 2 Comparisons of disordering energies (eV per f.u.) of spinel oxides calculated 

using SSOS, SQS, and CE methods. Fitted ECIs for cation distribution in the octahedral 

sublattice in inverse MgAl2O4 and ZnAl2O4 are shown in (a) and (b), respectively. All 

figure sizes are normalized with respect to that of the of the nearest-neighbor pair. The 

slow-decaying pair interactions and the weak many-body (triplet and quadruplet) 

interactions are characteristic of Coulomb interactions. The calculated disordering 

energies for MgAl2O4 and ZnAl2O4 are shown in (c) and (d), respectively. 
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FIG. 3 Modeling the random bcc A1B1C1D1E1 alloy using the SSOS and SQS 

approaches. The three 5-atom/cell structures 1
SSOSσ , 2

SSOSσ , and 3
SSOSσ  in SSOS-3×5 are 

shown in (a), (b) and (c), respectively. The 125-atom SQS structure is shown in (d). All 

structures are shown in their ideal, unrelaxed forms. Comparisons between SSOS 

calculated and SQS calculated formation energies and equilibrium volumes for 12 

random bcc A1B1C1D1E1 alloys are shown in (e) and (f). Only volume relaxations have 

been performed for this comparison. The green solid lines represent prefect agreement 

between the two methods. 

 

 



 17

 

FIG. 4 High-throughput screening of potential single-phase bcc HEA compositions. 

Instability energy vs. lattice stability plot for 1337 HEA candidates is shown. The six 

experimentally confirmed bcc HEA compositions are marked in red. For reasons of 

efficiency, only volume relaxations have been performed for this initial screening. For 

HEA candidates with relatively low volume relaxed instability energies, we further allow 

all internal atomic positions to relax in our SSOS calculations, and such results are 

reported in Table I.  


