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Sudden viscous dissipation of compressing turbulence

Seth Davidovits and Nathaniel J. Fisch
Princeton University, Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540, USA

Compression of turbulent plasma can amplify the turbulent kinetic energy, if the compression is
fast compared to the viscous dissipation time of the turbulent eddies. A sudden viscous dissipation
mechanism is demonstrated, whereby this amplified turbulent kinetic energy is rapidly converted
into thermal energy, suggesting a new paradigm for fast ignition inertial fusion.

Introduction.—Unprecedented densities and tempera-
tures are now reached by compressing plasma using lasers
or magnetic fields, with the objective of reaching nuclear
fusion, prodigious x-ray production, or new regimes of
materials. The plasma motion in these compressions can
be turbulent, whether magnetically driven [1–4] or laser
driven [5, 6]. However, rapid compression of this turbu-
lent plasma, where the viscosity is highly sensitive to tem-
perature, is demonstrated here to exhibit unusual behav-
ior, where the turbulent kinetic energy (TKE) abruptly
switches from growing to rapidly dissipating. This be-
havior occurs in plasma, but is not predicted by stud-
ies of neutral gas compression [7–13]. In fact, it was
observations of the dominant effect of the TKE in Z-
pinches, both in pressure balance [4] and in radiation
balance [2, 4], that stimulated the present study.

Compression is rapid if the rate of compression is fast
compared to the turbulent timescale τ = k/ǫ with k the
TKE and ǫ the viscous dissipation rate. In the initially
rapid plasma compressions here, the viscous dissipation
eventually grows such that the turbulent timescale τ
shortens, and the plasma TKE suddenly dissipates. This
dissipation is sudden in that it occurs over a time interval
that is small compared to the overall compression time.

This sudden dissipation mechanism now suggests a
new fast ignition paradigm. Imagine an initially turbu-
lent fusion fuel plasma where the majority of the en-
ergy is in the turbulent motion. This plasma is then
rapidly compressed, causing both the TKE and thermal
energy to grow, while the TKE retains most of the energy,
as observed in certain Z-pinch experiments [1–4]. Since
radiation losses (both synchrotron and bremsstrahlung)
and nuclear fusion are dependent on thermal energy but
not the TKE, those processes are minimized under such
compression, since the plasma stays comparatively cool.
However, late in the compression, the TKE suddenly dis-
sipates viscously into thermal energy, thereby igniting the
plasma without having undergone large radiation losses.

In neutral gas, upon rapid compression, the TKE
grows. In an isotropic 3D compression, it grows as 1/L2,
where L is the (time dependent) side length of a box that
is compressing with the mean flow along each axis. This
is true for both the zero Mach case [7], where the TKE
is solenoidal, as well as in the finite Mach case, where
the TKE has both solenoidal and dilational components,
which each grow in energy as 1/L2 [12]. This is the same

rate at which the temperature increases for an adiabatic
ideal gas compression in 3D. Thus, in an idealized rapid
compression the ratio of TKE to thermal energy stays
constant, making the initial conditions very important
for the energy dynamics while the compression is rapid.
In plasma, as in neutral gases, the TKE similarly grows

under compression, but the greater sensitivity of viscosity
to temperature now has a telling effect. The rapid com-
pression causes the TKE to grow, with most of the TKE
contained in the large scale eddies. The energy equation
for the viscous dissipation of TKE, ETKE, is

dETKE

dt
=

µ(T )

ρ
〈ul · ∇

2
ul〉 ∼ −LT 5/2ETKE, (1)

where the last scaling reflects the viscosity dependence
in plasma going as µ(T ) ∼ T 5/2. This contrasts with
the weaker scalings used for compressing gases, such
as ∼ T 3/4 (e.g. [7, 11]). The compression forces the
energy containing eddies to smaller and smaller scales;
∇2 ∼ 1/L2, where L is the shrinking domain (and largest
eddy) scale. The density scales as ρ ∼ 1/L3. The tem-
perature increases during the compression, going as (for a
3D adiabatic compression of monatomic gas) T ∼ 1/L2,
so that the total dissipation scales as 1/L4. The in-
creasing viscosity dissipates the smallest scales first, then
works up to the large energy-containing scales. The sen-
sitive dependency of the viscosity to the temperature now
means that the viscous dissipation of the large-scale TKE
occurs rapidly as a function of L. Thus, under rapid com-
pression, the TKE first grows with decreasing L, and then
suddenly dissipates essentially at constant L.
This sudden dissipation effect is demonstrated here nu-

merically in the limit of small initial TKE, so that the
increase in temperature is due only to the direct compres-
sion, and not the self-consistent transfer of TKE to ther-
mal energy. For turbulence where a substantial fraction
of the energy is contained in the TKE, the dissipation
should be even more sudden, in fact, explosive, because
there is a feedback mechanism for the viscous dissipation.
To see this, consider that the viscous dissipation drives
the temperature according to: dT/dt ∼ LT 5/2ETKE. If
most of the energy is in the TKE, then the viscous dissi-
pation will rapidly raise the temperature. This in turn,
will rapidly raise the viscosity, since µ(T ) ∼ T 5/2, ac-
celerating the conversion of TKE into temperature. The
result is an explosive instability, until the TKE is de-
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pleted. Thus, while we simulate sudden viscous dissipa-
tion for small initial TKE, it is with the understanding
that the effect may be even more sudden for large initial
TKE. The sudden dissipation in any event underlies the
proposed new paradigm for fast ignition.
Model.— To model the compression of a turbulent

plasma in the zero Mach limit, we follow previous work
on compressing fluids [7–9, 13, 14]. The total (subscript
t) plasma density, pressure, and flow are decomposed into
mean (overbar) and fluctuating parts (subscript l),

ρt = ρ̄+ ρl, (2a)

pt = p̄+ pl, (2b)

ut = ū+ ul. (2c)

The mean flow, ū in Eq. (2c) is taken to be an externally
enforced background flow of the form

ū = A(t)xl = (L̇/L)Ixl, (3)

where I is the identity matrix, the subscript l on the
coordinate xl is to indicate it is a stationary lab coordi-
nate, and L(t) is the length along each side of a box that
is advected with the background flow. The compression
is chosen to be isotropic, so that the matrix A can be
rewritten with I, and L̇ is taken to be constant.
In the low Mach number limit, the density fluctuations

ρl are neglected, and the turbulent velocity is divergence
free ul [9, 14]. The mean density depends only on time,

ρ̄ = ρ0 (L0/L(t))
3
, (4)

with ρ0 and L0 the initial density and box length respec-
tively. Under these conditions, the momentum equation
for the plasma has the form [9],

∂ul

∂t
+ul ·∇lul+Axl ·∇lul+Aul =

−1

ρ̄
∇lpl+

µ (T )

ρ̄
∇2

l ul.

(5)
The viscosity is taken as a function of temperature,

µ(T (t)) = µ0 (T (t) /T0)
β
= µ0 (L0/L(t))

2β
. (6)

Here T0 and µ0 are the initial temperature and the initial
(dynamic) viscosity respectively. The compression is as-
sumed adiabatic, and the gas is ideal and monatomic, so
that the temperature increases as T (t) = T0(L0/L(t))

2.
As previously stated, feedback from the viscous dissipa-
tion of kinetic energy into temperature is neglected.
Working in a frame that moves with the background

flow ū eliminates the explicit xl dependence in Eq. (5), al-
lowing for periodic boundary conditions. This is achieved
with the coordinate transformation xl = L(t)x. The tur-
bulent velocity is transformed as

ul(xl, t) = u(x, t). (7)

and the pressure is transformed similarly, pl(xl, t) =
p(x, t).

After transformation, the momentum equation for u is

∂u

∂t
+

1

L
u · ∇u+

L̇

L
u = −L2∇p+

1

Re0
Lµ(T )∇2

u (8)

where the standard nondimensionalization has been used,
and L is understood to be normalized to L0. The
Reynolds number is subscripted with a 0 because one
may view the effective Reynolds number as changing due
to the compression.
The effects of the compression in the moving frame

appear as time dependent coefficients on the nonlinear,
pressure and dissipation terms, and as a new term, pro-
portional to u. This new term may be viewed as a forcing
or damping, depending on its sign (as written, a nega-
tive sign is forcing). Indeed, a (constant coefficient) term
proportional to u has been used to force turbulence for
turbulence codes working in real space, where spectral
forcing methods may be difficult to implement [15–17].
The variables in the momentum equation in the moving

frame, Eq. (8) can be rescaled so that the forcing term
is eliminated, and one is left with regular Navier-Stokes
with a time dependent viscosity [9]. We choose instead
to eliminate the time dependence from all terms except
the forcing term, by using the scalings,

u = L(2−2β)
û, (9a)

p = L(1−4β)p̂, (9b)

dt′ = L(1−2β)dt. (9c)

Doing so speeds up our simulations, by eliminating time
dependence from the stiff viscous term. The momentum
equation, Eq. (8), with the scalings in Eqs. (9) is,

∂û

∂t′
+ û ·∇û+(3− 2β)

L̇

L2−2β
û = −∇p̂+

1

Re0
∇2

û. (10)

The scaled momentum equation in the moving frame,
Eq. (10), is incompressible Navier-Stokes with an extra
time dependent forcing (or damping) term proportional
to û.
Sudden viscous dissipation.— We consider constant ve-

locity compressions, with L = 1 − 2Vbt, and use the
plasma viscosity, β = 5/2. The forcing term in Eq. (10)
acts as a damping term, the strength of which decays in
time, asymptoting to 0 as t′ → ∞ (L → 0). Thus, in the
moving frame and scaled variables, the turbulence sim-
ply decays, at a rate that is faster than through viscos-
ity alone. The damping term, in Fourier (wavenumber)
space, has no wavenumber dependence and damps all
modes proportional to their strength, so that the overall
spectral dynamics is different than decaying turbulence.
While in this frame and variables the turbulence de-

cays, in the lab frame, it may grow. Equation (9a) com-
bined with Eq. (7) show the lab flow is amplified by the
factor 1/L3 compared to the moving frame flow. Thus,
even though the flow field û decays in the moving frame,
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FIG. 1. LEFT: Turbulent kinetic energy (TKE) during compression at various rates. An initially turbulent flow field, with
TKE normalized to 1, is compressed on times (τc = 1/2Vb) slower than (Vb = 0.1), comparable to (Vb = 1) and faster than
(Vb = 10, 100) the initial turbulence timescale τ0 = (k/ǫ)0 ∼ 1/2. The initial domain is a box of size 13, time progresses right
to left (t = (1 − L)/(2Vb)) as the compression shrinks the domain. When the compression is slow, the TKE damps, albeit at
a slower rate than it would with no compression. When it is comparable, the energy stays relatively constant before damping.
When it is faster, the TKE grows substantially, before being suddenly dissipated over a small range of L. Also shown is the
theoretical rapid distortion theory (RDT) solution, which is exact while the compression is extremely fast. RIGHT: Flowfield
slices showing the magnitude of the turbulent flow velocity in the lab frame for Vb = 10. The fields progress in time from
A→B→C→D, and are marked on the left graph to show the amount of compression and the total TKE of the flow. As time
increases the flow is increasingly contained in the largest structures as the smaller structures run into the viscous scales; see
also Fig. 2. All plots are normalized to side length 1, in the lab frame the absolute size of all structures decreases in time.

it may increase in the lab frame if the decrease in L is
rapid enough that the 1/L3 growth overcomes the decay.

We simulate Eq. (10) with periodic boundary condi-
tions using the spectral code Dedalus [18]. An initial tur-
bulent flow field is generated using the forcing method of
Lundgren [15, 16], with a coefficient of 1 so that the initial
turnover time is approximately 1/2, and Re0 is taken as
3000. We use a 1283 Fourier grid and 3/2 dealiasing. The
simulations are initially under-resolved, but quickly be-
come resolved as the compression progresses. Our main
focus is to show the qualitative behavior of the sudden
dissipation. For the same initial flow field, we simulate
compression at various compression velocities Vb. The
compression is continued until the turbulent kinetic en-
ergy dissipates. Different initial flow fields with similar
but non-identical energy spectra show similar behavior
to the results presented. Key results are shown in Figs. 1
and 2 and discussed in the captions.

To understand this sudden dissipation, consider the
TKE equation in the lab frame. Because ul = u, Eq. (7),
the lab TKE can be put as k(t) = 〈u2/2〉, where, for the
homogeneous, isotropic case considered here, the angle

brackets denote a spatial average over the domain. The
equation for dk/dt is

dk

dt
= −2

L̇

L
k − L1−2βǫ. (11)

Here, ǫ is the viscous dissipation, given by ǫ = −〈u ·
∇2

u〉/Re0, and the first term on the right hand side in
Eq (11) represents energy increase due to the compres-
sive forcing. The compression is rapid when this energy
increase term is much larger than the viscous dissipa-
tion term. Then the dissipation term in Eq. (11) can
be dropped and the kinetic energy in the lab frame is
found to be k(L) = k0/L

2. This is the basic rapid dis-
tortion theory solution [7] which is shown for compari-
son in Fig. 1. When β = 5/2, the dissipation term in
Eq. (11) has a prefactor of 1/L4, which grows strongly as
L decreases. It is apparent from Fig. 1 that under rapid
compression the turbulent kinetic energy initially grows,
but at some point the growth of the viscous dissipation
overcomes this growth and causes it to damp.
Discussion and Caveats.— For an illustration of a pa-

rameter regime where the sudden dissipation effect could
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FIG. 2. Fourier mode distribution of the turbulent kinetic
energy (TKE) for turbulence compressed at a rate that is ini-
tially fast compared to the turbulent timescales (Vb = 10).
The total TKE as a function of L (time) is shown as the solid
cyan line in Fig. 1. The initial spectrum is L = 1 (blue,
solid). After moderate compression (L = 0.32, dotted green),
but before the peak TKE, the energy in the highest modes
has damped substantially, but energy has gone into the large
scale flow. Near the peak TKE (L = 0.15, dashed red) this
trend has continued, with viscosity working its way towards
larger scales, and the largest scales continuing to gain energy.
When the viscosity hits the largest scales, the energy is sud-
denly dissipated, after which all modes have been damped
(L = 0.05, dash-dotted cyan). The four spectra approxi-
mately correspond in L (time) to the four fields in Fig. 1.

possibly appear, consider the parameters of a magnetized
liner inertial fusion (MagLIF) point design [19]; after
laser pre-heating, but before compression, the cylindri-
cal liner with radius 2.7 mm contains a 50/50 mix of
deuterium (D) and tritium (T) at 250 eV, and densities
of ∼ 3.5 × 1020/cm3. The gas has a kinematic viscosity
of ν ∼ 7.8 × 10−3m2/s. Suppose the gas had an initial
Reynolds number of 3000, as used for the results in Fig. 1.
This would mean large scale flows on order of 8.6 km/s
existed inside the capsule, which would be much smaller
than the D and T thermal velocities (∼ 100km/s), mak-
ing the turbulence low Mach. The Z machine compresses
the gas with a velocity around 50 km/s, slower than the
thermal speeds, but much faster than the flow speed.
Approximating it as 10 times faster, making crude ac-
counting for the fact the compression is 2D rather than
3D, and comparing to the cyan curve on Fig. 1, it is es-
timated that the flow energy would peak and begin sud-
denly dissipating after a factor of 10 compression, around
a radius of 0.27 mm. The TKE would grow up by a factor
of approximately 10 before the dissipation, while remain-
ing a minor fraction of the total energy. A more complete
plasma model should be used before predictions are made
for any specific experiment, MagLIF included.

There are, of course, a number of important caveats
for the present work. On one hand, very precise mea-
surements show that compression on the WIS Z-pinch
leads to ion motion that is dominated by TKE in the im-
ploding plasma [1]. On the other hand, alternative expla-
nations for this effect have not been exhausted [20]. Also,
the proposed fast ignition paradigm contemplates super-
sonic turbulence, not the zero Mach number turbulence
limit simulated here. A flow with much more energy in
the turbulence than in temperature is necessarily super-
sonic. While the present work provides good motivation
for plasma with supersonic TKE also to exhibit a sudden
viscous dissipation effect, it remains to demonstrate it.
As noted in the introduction, in the small Mach number
turbulence limit, rapid 3D compression causes the TKE
to grow as 1/L2, as does the temperature. Therefore the
turbulence in such compressions stays low Mach. The
initial state of supersonic turbulence, which decays on a
timescale long enough to be rapidly compressed, must be
generated in some fashion. A staged implosion, where a
first stage generates supersonic turbulence, and a second
stage rapidly compresses it, is one possibility.

The lowMach number in the compressions treated here
means that even at late times, when the Reynolds num-
ber is small, the Knudsen number is small (Kn ∼ M/Re),
so that the fluid description should remain appropriate.

Note that the constant velocity compression considered
here requires an ever increasing compressive force. This
may occur naturally for some period of time (not indefi-
nitely), especially on Z-pinches where the constriction of
the current causes the magnetic pressure to continually
increase. The consideration of alternate compression his-
tories is straightforward. Boundary effects, such as vis-
cous drag on the fluid motion, were ignored here through
the use of periodic boundaries. They may be important
in practical applications, especially as the imploding fuel
becomes smaller. In the late stages of the implosion a new
equation of state and viscosity dependence on tempera-
ture may alter the results. Finally, although the virtuous
features of TKE were exploited here, namely the reduced
radiation and the deferral of fusion reactions, there could
be deleterious features of most of the energy residing in
TKE during the compression phase, such as by increasing
heat transport or contributing to mixing [5, 6, 21].

These caveats notwithstanding, what remains is a tan-
talizing, if speculative, new paradigm, namely using
rapid compression to increase the energy in turbulent
structures incapable of radiating much energy away dur-
ing the compression, nor prematurely igniting the plasma
through fusion reactions, with the energy in these tur-
bulent structures then explosively converting to heat as
the viscosity grows, thereby creating the deferred igni-
tion conditions without radiative loss. The strong depen-
dency of viscosity on temperature in plasma facilitates
the sudden dissipation, as confirmed by the simulations
presented here in the subsonic limit.
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