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We investigate the influence of curvature and topology on crystalline dimpled patterns on the
surface of generic elastic bilayers. Our numerical analysis predicts that the total number of defects
created by adiabatic compression exhibits universal quadratic scaling for spherical, ellipsoidal and
toroidal surfaces over a wide range of system sizes. However, both the localization of individual
defects and the orientation of defect chains depend strongly on the local Gaussian curvature and its
gradients across a surface. Our results imply that curvature and topology can be utilized to pattern
defects in elastic materials, thus promising improved control over hierarchical bending, buckling or
folding processes. Generally, this study suggests that bilayer systems provide an inexpensive yet
valuable experimental test-bed for exploring the effects of geometrically induced forces on assemblies
of topological charges.

Topological defects and geometric frustration are in-
trinsic to two-dimensional (2D) curved crystals [1]. The
minimal number of defects in a periodic polygonal tiling
is dictated by Euler’s theorem [2], which relates the sur-
face geometry to the total topological defect charge. The
hexagonal soccer-ball tiling is a canonical example, re-
quiring 12 pentagonal defects that are also realized in
C60 fullerenes [3]. However, large 2D crystals often ex-
hibit defect numbers that go substantially beyond the
minimal topological requirement [4]. These excess de-
fects aggregate in molecule-like chains [5–7] that relieve
elastic energy costs arising from a mismatch between the
crystal symmetry and the curvature of the underlying
manifold [8, 9]. The aggregation of curvature-induced
defects plays an essential role in various physical pro-
cesses, from the classic Thomson problem of distributing
discrete electric charges onto a sphere [10] to the assem-
bly of virus capsules [11] and the fabrication of colloido-
somes [12], toroidal carbon nanotubes [13], and spheri-
cal fullerenes from graphene [14]. Over the past decade,
considerable progress has been made in understanding
crystal formation in spherical [6, 7, 15] and more com-
plex geometries [12, 16–19]. Yet, empirical tests of the-
oretical concepts have remained restricted [5, 20, 21] to
paraboloids or mean-curvature surfaces, owing to the lack
of tractable experimental model systems.

Here, we show through theory and simulations that
curved elastic bilayers offer a promising test-bed to study
defect crystallography in arbitrary 2D geometries. Build-
ing on a recently derived and experimentally validated
scalar field theory [22], we first confirm that the pattern
formation process induced by buckling of curved elastic
films adhered to a softer substrate reproduces previously
established results for spherical crystals [6, 23]. Subse-
quently, we demonstrate how curvature and topology de-

termine defect localization on surfaces with non-constant
curvature. For typical experimental parameters [23], our
analysis reveals the emergence of previously unrecognized
robust superstructures, suggesting the usage of topology
and geometry to control defect aggregation.

Our elastic bilayer system consists of a thin stiff film
adhered to a soft curved substrate. Recent experi-
ments [23–25] with spherical substrates showed that, un-
der weak compression, such films can develop a buck-
led surface topography comprising a crystalline quilted
pattern (Fig. 1). The experimental patterns are de-
scribed quantitatively by a generalized Swift-Hohenberg
theory [22], which is employed here to obtain predictions
for more general geometries. Measuring lengths in units
of film thickness h and focussing on leading-order ef-
fects, the theory relates the normal displacement field
u of the deformed film to the minimum of the energy
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FIG. 1. (color online) Buckling-induced crystalline surface
patterns on a thin film of thickness h adhered to a soft core
(top), obtained by minimization of Eq. (1), and their dual
hexagonal Voronoi tessellations (bottom) for different surface
geometries: (a) sphere (R/h = 70), (b) ellipsoid (Rx = 2Ry =
2Rz = 110h), (c) torus (r/h = 16, R/h = 80). The color bar
represents the surface elevation. The outlined surface domain
in (b) highlights chains of defects. Voronoi cells are color-
coded by their coordination number Z.
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FIG. 2. (color online) (a) The total number of defects grows linearly with
√
N , where N is total number of lattice units,

exhibiting similar slopes for all geometries (solid line: linear fit for spheres). Inset: Excess dislocations on spheres were
predicted [6] to increase linearly with reduced radius ρ = R/λ for colloidal crystals (solid line). For comparison, the best-fit
power law (ρ− ρc)β with ρc = 4.5± 0.4 and β = 0.67± 0.08 is also shown. (b-d) The total defect charge grows differently with
integrated Gaussian curvature I for different geometries. The gray-shading represents the conditional PDFs of the total charge
Q for a given value of I. The red dashed line corresponds to linear growth I = (π/3)Q. Dark regions in the surface sketches
illustrate integration domains.

functional [22]
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γ0 (∇u)

2
+

1

12
(4u)

2
+ au2 +

c

2
u4 − Γ(u)

]
,

(1)

where k = Ef/(1 − ν2), and Ef is the Young’s
modulus of the film with undeformed surface ele-
ment dω. The Poisson’s ratio ν is assumed to
be equal for the film and substrate. The nonlin-
ear term Γ(u) =

[
(1− ν)bαβ∇αu∇βu+ 2νH(∇u)2

]
u +

H
[
4H2 − (3− ν)K

]
u3 represents stretching forces, with

surface gradient ∇ and Laplace-Beltrami operator 4.
The trace H of the curvature tensor bαβ defines the
mean curvature and K denotes the Gaussian curvature.
Periodic undulating patterns form on the surface when
the film stress exceeds the critical buckling stress, corre-
sponding to a < ac = 3γ20 where γ0 defines the pattern
wavelength λ = 2π/

√
6|γ0|, while the amplitude is con-

trolled by c [22]. The curvature-dependent Γ(u)-term
determines the symmetry of the patterns. In the pla-
nar case with Γ(u) = 0, Eq. (1) reduces to the Swift-
Hohenberg model [26] and minimization of Eq. (1) pro-
duces stripe-patterns. For |Γ(u)| > 0, the symmetry
u → −u is broken, causing a transition to hexagonal
dimple-patterns [22]. A systematic derivation [22] spec-
ified all parameters in Eq. (1) in terms of known mate-
rial and geometric quantities, so that our predictions can
be directly compared to future experiments. Our simu-
lations use the material parameters of Ref. [22] for the
hexagonal phase with λ ∼ 9.1 throughout.

We analyze Eq. (1) for: spheres of radius R, prolate el-
lipsoids of principal axis Rx = 2Ry = 2Rz, and tori with
aspect ratio r/R between major axis R and minor axis r
(Fig. 1). For each geometry, we choose a/ac ≈ 0.98 and
add small random perturbations to the originally unde-
formed film (u0 ≡ 0). We then minimize Eq. (1) numer-

ically using a custom-made finite element method [27].
From the stationary displacement field, the dimple cen-
troids are identified as lattice points and the correspond-
ing Voronoi tessellations are constructed (Fig. 1). We
define the topological charge s = 6 − Z for each lattice
point, where Z is the coordination number. Probabil-
ity density functions (PDFs) and statistical averages are
obtained from simulations with different random initial
conditions but otherwise identical parameters.

Since the total number of lattice units N is propor-
tional to the surface area,

√
N is a geometry-independent

measure of the system size. We now characterize the total
number of defects Nd and find that it grows linearly with√
N for all geometries (Fig. 2a), while generally exceed-

ing the Euler bound for the minimal number of defects.
For example, the case with the 12 topologically required
defects of charge s = +1 (positive disclinations) can only
be observed for small spheres, whereas Nd increases lin-
early with slope m = 4.5 ± 0.6 above the critical size√
Nc = 14.2± 3.6 (Fig. 2a). In terms of the reduced ra-

dius ρ = R/λ, Nc corresponds to a critical value ρ∗ ∼ 4.3,
in good agreement with experiments [23].

The increase of Nd with system size can be explained
as follows. Each disclination imposes a set change of
Gaussian curvature, independently of

√
N . If the mis-

match with the substrate’s target curvature becomes too
large, additional defects are introduced to screen curva-
ture, thereby lowering the total elastic energy [9, 28]. To
preserve the total charge, excess defects appear as neu-
tral pairs of opposite charge called dislocations. For large
systems, defects typically form longer chains classified as
either neutral pleats or charged scars [5]. For spheres,
the number of excess dislocations per scar is predicted
to grow linearly above ρc with slope ≈ 0.41ρ [9, 28].
This scaling has been experimentally verified in col-
loidal crystals [6], and agrees with our simulations, al-
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though a power-law ∼ (ρ − ρc)
β with ρc = 4.5 ± 0.4

and β = 0.67 ± 0.08 also fits our data well (Fig. 2a, in-
set) [29]. These findings illustrate that geometry-induced
defect formation is insensitive to the details of the lattice
interactions [30], corroborating that elastic buckling pat-
terns can provide a viable model to study generic aspects
of curved crystals.

The screening effect of dislocations and its dependence
on geometry become manifest in the relationship be-
tween Gaussian curvature and topological charge [5, 23].
The Euler and Gauss-Bonnet theorems connect the sum
of topological charges si for all elements, Q =

∑
i si,

with the surface integral of the Gaussian curvature,
I =

∫
A
KdA = π/3

∑
i si = 2πχ, where χ is the Euler

characteristic of the surface. How well this relationship
is satisfied over a subregion of the surface provides in-
sight into the geometry dependence of defect localization.
For spheres, our results are consistent with Gauss-Bonnet
theorem; Q increases linearly with I (Fig. 2b). By con-
trast, for ellipsoidal geometries, Q grows faster than I
near the poles (|φ| = π/2) and there is an accumulation
of positive charges in high-curvature regions (Fig. 2c).
Although tori require no topological charge (χ = 0), our
simulations predict the creation of defects that help the
dimpled crystal comply with the curved substrate geome-
try [16]. In the outer region of the torus, where Gaussian
curvature is positive, we find that Q grows faster than
linearly with I, which is qualitatively similar to the el-
lipsoidal case but with larger spread.

Another striking phenomenon is the curvature-induced
localization and segregation of oppositely charged de-
fects. For ellipsoids, we find that the PDF for angu-
lar position of positively charged disclinations increases
strongly towards the poles, where for the chosen aspect
ratio the local Gaussian curvature is equivalent to that
of a smaller sphere with 2.6 times lower equivalent size.
This explains why isolated defects can be found at the
poles of even relatively large ellipsoids (Fig. 3a). With in-
creasing size, additional scars and pleats appear. Their
centroid positions cluster in the equator region around
φ = 0 (Fig. 3b), where the curvature is low and thus can-
not support isolated disclinations. To study the orien-
tations of these extended defect ‘molecules’, we measure
the orientation angle α enclosed by the end-to-end vec-
tor v and the tangent t along lines with θ = const. We
find no significant orientational order for positive or neu-
tral chains (Fig. 3b-d), consistent with earlier simulations
based on an inflation packing algorithm [31].

Tori, in contrast to ellipsoids, contain regions of posi-
tive and negative curvature and are more prone to striped
patterns. To identify the conditions for the pure crystal
phase, we recall that hexagonal patterns require |Γ(u)| >
0 in Eq. (1), whereas local stripe solutions emerge other-
wise [22]. The phase boundary at the onset of instabil-
ity, a = ac, can be estimated by parametrizing the torus
using the standard coordinates (φ, θ), then assuming a
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FIG. 3. (color online) Curvature-induced defect localization
on ellipsoids. (a) Isolated pentagonal +1-defects accumulate
in high curvature regions; p is the average number of single
defects per ellipsoid. (b) Although defect chains form prefer-
entially near the equator (|φ| = 0) their orientation angles α,
measured relative to the tangent vectors t, show no signifi-
cant ordering. (c,d) Voronoi tessellations for Rx/h = 40 and
Rx/h = 160. Ellipsoids with Rx/h ≥ 110 show a weak align-
ment of the lattices along lines φ = 0 (elements with the same
lattice orientation are connected by solid black lines).

striped pattern symmetric along θ, and finally inserting
u(θ, φ) ≡ u(φ) into the condition Γ(u) = 0. Solving for
φ, we find (see [32] for the derivation details)

φc ≈ ± cos−1
[
− R

r(1 + ν)

]
, (2)

which is independent of the system size and holds as long
as R, r � λ. For rubber-like materials (ν ≈ 0.5) solu-
tions ±φc ∈ [π2 , π] exist only for aspect ratios r/R > 2/3.
We thus expect striped patterns to dominate near the
inner rim of thick tori. Estimates of φc for a < ac
can be obtained similarly from isolines of the normal-
ized symmetry-breaking contribution to the energy den-
sity γ(r/R, φ) = (1+ r/R cosφ)(1+ν)−ν [32]. To verify
our predictions, we measured φc in simulations for tori
with 0.2 ≤ r/R ≤ 0.8 and a/ac = 0.98 (see [32]), and find
good agreement with the isoline γ = 0.42 (Fig. 4a and
additional data in [32]). The existence of a pure hexag-
onal phase for r/R < 2/3 provides a design guideline to
study toroidal crystals in future experiments.

Focusing on crystalline patterns on slender tori with
r/R = 0.2, our simulations show that defect localiza-
tion is strongly controlled by the interplay of Gaussian
curvature and topology. The requirement of a vanishing
net charge implies that positive and negative disclina-
tions appear in pairs. Their spatial arrangement can be
rationalized with an electrostatic analogy [17], in which
defects are interpreted as charged particles and curva-
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FIG. 4. (color online) Defect localization and superstructures on tori. (a) At the onset of instability, a = ac, pure hexagonal
phases are stable only for tori with r/R < 2/3 (dashed line, Eq. 2), while striped patterns occur at angles φ > φc for larger
aspect ratios. Simulations for a/ac = 0.98 agree well with the isoline estimates of the symmetry-breaking terms in the energy
density, γ(r/R, φ) = C, with C = 0.42 (solid line). (b) Isolated penta- and heptagonal defects segregate; p and n are the
average numbers of positive and negative disclinations per torus. (c) Orientations of charged scars and neutral pleats correlate
strongly with their transversal centroid position |φ|. (d) Defect positions are also strongly correlated along θ. (e,f) While this
positional ordering is less prominent in small systems [(e), R/h = 40], it becomes apparent for larger systems [(f) R/h = 160].
The toroidal superstructure (elements with the same lattice orientation are connected by solid black lines) follows geodesics of
minimal integrated absolute Gaussian curvature (dashed green line).

ture acts as an electric field. In this picture, positive
disclinations are attracted to regions of positive Gaus-
sian curvature at the outer rim of the torus (φ = 0),
whereas negative disclinations migrate to the inner region
(|φ| = π). This geometry-induced separation of charges
is directly reflected in the PDF of the individual discli-
nations (Fig. 4b). Analogously to the ellipsoidal case,
the total number of isolated disclinations (see the aver-
age numbers p and n for positive and negative charges
in Fig. 4b) decreases with system size, as defects tend to
aggregate in chains (Fig. 4e,f). Interestingly, we find that
the electrostatic analogy extends to defect chains: pos-
itive scars screen Gaussian curvature on the outer rim;
negative scars appear in the inner region; and neutral
pleats concentrate in the regions of vanishing Gaussian
curvature, |φ| = π/2 (Fig. 4c). Defect chains also be-
come oriented by geometric forces. Measuring the orien-
tation angle α of a chain relative to the tangent vector
t along the φ−direction (Fig. 4a), we find that charged
scars preferentially align parallel to the equatorial lines
such that α ∼ π/2, whereas neutral pleats tend to orient
vertically with α ∼ 0 (Fig. 4c). This ordering can be un-
derstood qualitatively by considering the end-points of a
defect chain. For scars, both end-points have the same
charge and therefore migrate to regions of same Gaus-
sian curvature (φ ∼ 0 for positively charged endpoints,
φ ∼ π for negatively charged ones), effectively orienting
the scar perpendicular (α = π/2) to lines φ = const. By
contrast, pleats have oppositely charged ends and hence

mimic electric dipoles that become oriented by curvature
to achieve α = 0.

Remarkably, our simulations reveal that defects not
only orient and segregate in the torus curvature field –
they also break the rotational symmetry of the toroidal
crystal in favor of an emergent discrete symmetry. More
precisely, by analyzing the lattice structure on large tori,
we find that the hexagonal elements arrange along an
undulating periodic deformation pattern (highlighted in
Fig. 4f by the black lines connecting the centroids of
elements with the same lattice orientation). This su-
perstructure still carries a fingerprint of the underlying
toroidal geometry: geodesics g(φ) = (φ, θ(φ)) on a torus
are solutions of [33]

dθ

dφ
=

c r

(R+ r cosφ)
√

(R+ r cosφ)2 − c2
. (3)

where c is a constant obeying Claireaut’s geodesic rela-
tion c = (R + r cosφ) sinψ, with ψ denoting the angle
between the tangent g′ and t [33]. Integrating Eq. (3)
numerically, we find that the lattice deformation follows
a geodesic passing through φ = 1.68 at its highest point
with ψ = π/2 (dashed green line in Fig. 4f). The phase
θ0, found by matching the phase of the geodesic with
that of the lattice, varies between samples. The inte-
grated absolute Gaussian curvature along this curve is
minimal among all geodesics that do not wind around the
φ-coordinate. We therefore hypothesize that alignment
along a geodesic of minimal absolute Gaussian curvature
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yields an energetically favorable crystal structure, for at
least those lattice parts close to where the geodesic re-
main nearly straight – much like wrapping a torus with
an inextensible ribbon. If this geometric argument is
correct, the superstructure should become independent
of the lattice size, as R/h increases. To test this hypoth-
esis, we simulated system sizes R/h ∈ {80, 120, 160}, and
measured the angular distance ∆θ between positive scars
near the outer rim. These simulations indeed reveal a
peak in the PDF P (∆θ) near π/4, which corresponds to
one quarter of the geodesic wavelength, independently
of system size (Fig. 4d, black curves). Moreover, nega-
tive scars on the inside of the torus appear in phase with
positive scars (∆θ = 0), while neutral pleats arrange be-
tween scars (∆θ ∼ π/8). Thus, the geometric lattice
superstructure also controls defect-chain localization.

A significant advantage of elastic crystals over fluid-
based systems is their fabrication versatility, which en-
ables the exploration of arbitrary geometries and topolo-
gies. Of particular biomedical and nanotechnological rel-
evance are toroidal geometries that are difficult to achieve
in a colloidal suspension. Important realizations include
toroviruses [11] and carbon nanotori [13], whose electro-
magnetic properties are affected by defects [34, 35]. Our
results show that spatially varying curvature can lead to
emergent superstructures that determine defect localiza-
tion. Since defects trigger secondary instabilities [36],
this previously unrecognized phenomenon may be also
exploited to control hierarchical buckling and folding.
More generally, our analysis implies that elastic crystals
provide a rich model system for studying the profound in-
terplay between geometric forces and topological charges.
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[8] A. Pérez-Garrido, M. Dodgson, and M. Moore, Phys.

Rev. B 56, 3640 (1997).
[9] M. Bowick, D. Nelson, and A. Travesset, Phys. Rev. B

62, 8738 (2000).
[10] J. Thomson, Philos. Mag. 7, 237 (1904).
[11] D. Caspar and A. Klug, in Quant. Biol., Vol. 27 (Cold

Spring Harbor Laboratory Press, 1962) pp. 1–24; E. Sni-
jder and M. Horzinek, J. Gen. Virol. 74, 2305 (1993).

[12] A. Dinsmore, M. Hsu, M. Nikolaides, M. Marquez,
A. Bausch, and D. Weitz, Science 298, 1006 (2002);
V. Manoharan, ibid. 349, 1253751 (2015).

[13] J. Liu, H. Dai, J. H. Hafner, D. T. Colbert, and R. E.
Smalley, Nature 385, 780 (1997).

[14] A. Chuvilin, U. Kaiser, E. Bichoutskaia, N. Besley, and
A. Khlobystov, Nat. Chem. 2, 450 (2010).

[15] D. Wales and S. Ulker, Phys. Rev. B 74, 212101 (2006).
[16] L. Giomi and M. Bowick, Eur. Phys. J. E Soft Matter

27, 275 (2008).
[17] M. Bowick, D. Nelson, and A. Travesset, Phys. Rev. E

69, 041102 (2004).
[18] E. Bendito, M. Bowick, A. Medina, and Z. Yao, Phys.

Rev. E 88, 012405 (2013); V. Vitelli, J. B. Lucks, and
D. R. Nelson, Proc. Natl. Acad. Sci. U.S.A. 103, 12323
(2006).

[19] C. Negri, A. Sellerio, S. Zapperi, and M. Miguel, Proc.
Natl. Acad. Sci. U.S.A. 112, 14545 (2015).

[20] M. Bowick, L. Giomi, H. Shin, and C. Thomas, Phys.
Rev. E 77, 021602 (2008).

[21] W. Irvine, M. Bowick, and P. Chaikin, Nat. Mat. 11,
948 (2012).

[22] N. Stoop, R. Lagrange, D. Terwagne, P. Reis, and
J. Dunkel, Nat. Mat. 14, 337 (2015).

[23] M. Brojan, D. Terwagne, R. Lagrange, and P. Reis, Proc.
Natl. Acad. Sci. U.S.A. 112, 14 (2015).

[24] D. Terwagne, M. Brojan, and P. M. Reis, Adv. Mater.
26, 6608 (2014).

[25] D. Breid and A. J. Crosby, Soft Matter 9, 3624 (2013).
[26] M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65,

851 (1993).
[27] N. Stoop, F. K. Wittel, M. B. Amar, M. M. Müller, and

H. J. Herrmann, Phys. Rev. Lett. 105, 068101 (2010);
R. Vetter, N. Stoop, T. Jenni, F. K. Wittel, and H. J.
Herrmann, Int. J. Numer. Meth. Eng. 95, 791 (2013).

[28] A. Travesset, Phys. Rev. B 68, 115421 (2003).
[29] We consider a dislocation to be part of a scar when the

distance is smaller than or equal to two lattice spacings.
[30] M. Bowick, A. Cacciuto, D. Nelson, and A. Travesset,

Phys. Rev. Lett. 89, 185502 (2002).
[31] C. Burke, B. Mbanga, Z. Wei, P. Spicer, and T. Ather-

ton, Soft Matter 11, 5872 (2015).
[32] See Supplemental Material at URL for the derivation of

the equations in the main text and further details on the
alignment of the toroidal crystal.

[33] J. Oprea, Differential geometry and its applications (The
Mathematical Association of America, 2007).

[34] Z. Zhang, Z. Yang, X. Wang, J. Yuan, H. Zhang, M. Qiu,
and J. Peng, J. Phys. Condens. Matter 17, 4111 (2005).

[35] J. A. Rodŕıguez-Manzo, F. López-Uŕıas, M. Terrones,
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