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We present a parameter estimation technique based on performing joint measurements of a weak
interaction away from the weak-value-amplification approximation. Two detectors are used to collect
full statistics of the correlations between two weakly entangled degrees of freedom. Without dis-
carding of data, the protocol resembles the anomalous amplification of an imaginary-weak-value-like
response. The amplification is induced in the difference signal of both detectors allowing robustness
to different sources of technical noise, and offering in addition the advantages of balanced signals for
precision metrology. All of the Fisher information about the parameter of interest is collected. A
tunable phase controls the strength of the amplification response. We experimentally demonstrate
the proposed technique by measuring polarization rotations in a linearly polarized laser pulse. We
show that in presence of technical noise the effective sensitivity and precision of a split detector is
increased when compared to a conventional continuous-wave balanced detection technique.

Introduction Anomalous amplification [1] has been
shown to be advantageous for precision metrology. Such
an amplification provides a way to increase a signal while
decreasing [2] or retaining the technical-noise floor [3, 4].
As a result, the sensitivity and precision of measurements
limited by technical noise can be effectively improved, fa-
cilitating the saturation of the standard quantum limit.
Anomalous amplification was first proposed for metrol-
ogy with the introduction of the Weak Value (WV) of
an observable [1, 5], and parameter estimation proto-
cols defined after it are usually known as Weak-Value-
Amplification (WVA) techniques. The WV of an ob-
servable is obtained by post-selecting the state of a sys-
tem after a weak interaction with a meter system. In
WVA, such measurements in the system induce a dis-
carding of data counts in the measurements of the meter.
In addition to the notion that the state of the system
is post-selected after the weak interaction, we consider
post-selection as the process of selecting and processing
desired events, which, for weak values, results in discard-
ing data in the meter. Due to the interference of the pre-
and post-selection states of the system the WV can take
large complex values outside the eigenvalue spectrum of
the observable, which defines the anomalous amplifica-
tion in WVA. Discussion about the quantum interpre-
tation of such a phenomenon can be found in Refs. [6–
9]. Many recent applications of WVA for metrology have
been done in classical optics, where the interference can
be understood using standard wave mechanics [10, 11].

Strong postselection is necessary for anomalous ampli-
fication in WVA techniques, but discarding data counts
has been the target of criticism, and even considered
“harmful” for metrology [12–14]. However, it has been
shown, theoretically and experimentally, that the statis-
tical information collected by the measurements is in-

significantly reduced because the amplified signal can
compensate for the reduced detection flux resulting from
postselection [3, 4, 15–19]. Such a result is possible un-
der an almost orthogonal pre- and post-selection proce-
dure in the system allowing one to collect nearly all of
the Fisher information using only a small subensemble
of measurement counts in the meter [3]. For example,
the shot-noise limit defined by the input number of pho-
tons used in measurements of the small velocity of one of
the mirrors of a Michelson interferometer can be reached
using WVA [16]. Moreover, it was recently shown that
by postselecting only 1% of the photons, when measur-
ing small optical deflections constrained to intrinsic elec-
tronic detector noise, 99% of the total available Fisher
information can be recovered [4].

Signal amplification while avoiding detector saturation
sparked interest in WVA as a precision metrological tech-
nique several years ago [20–22], and was recently shown
to be essential for the technical-noise mitigation advan-
tages [3, 4]. We will introduce the possibility of inducing
anomalous amplification without the need of discarding
data and without any loss of Fisher information.

Strübi and Bruder [23] recently proposed a precision
measurement technique for measuring time delays of light
by carrying out a full measurement of the two weakly cor-
related degrees of freedom: frequency and polarization.
They concluded that even for low-resolution detectors,
the scheme is robust against systematic errors and fluctu-
ations in alignments of the experimental setup. We show
that by subtracting the readouts of the two detectors in
such a measurement, a WVA-like response is obtained
in the difference signal. This anomalous amplification
behaviour clarifies and extends the results reported in
Ref. [23], since besides having the amplification response
typical of the WVA approach (without discarding data),
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our protocol adds the benefits of balanced detection for
precision metrology. We show that this technique allows
us to recover all of the Fisher information of the esti-
mated parameter. In addition, it permits the removal of
systematic error in the measurement of the shift in the
difference signal by tracking the unshifted sum signal as
well.

Theoretical Framework Following the formalism as in
WVA, we describe the unitary evolution of a two-party
system as U = exp (−ig q̂ ⊗ Â), where Â is a binary de-
gree of freedom (qubit) controlling the encoding of the
information about the interaction parameter g in the con-
tinuous (meter) observable q̂ [24]. In contrast to WVA,
where a small set of measurements for q̂ are taken into
account due to postselection, the operator q̂ after the
interaction is always measured and conditioned to one
of two detectors. The proposed procedure is done by
preparing the initial global state as the product state
|Ψin〉 ⊗ ψ(q), with |Ψin〉 = (|0〉+ |1〉)/

√
2, and by track-

ing q conditioned to the measurement basis |Ψ1,2〉 =
(|0〉 ± ieiε|1〉)/

√
2 on the qubit/system. Here |0〉 and

|1〉 are the eigenvectors of Â, where Â = |1〉〈1| − |0〉〈0|,
and projections to the two detectors are labelled by 1
and 2. The small phase ε defines the measuring basis
on the equatorial plane of the Bloch sphere, where the
initial prepared state for the qubit |Ψin〉 also lies. The
probability distributions measured on the detectors take
the form

P1,2(q; g) = |〈Ψ1,2|U |Ψin〉ψ(q)|2

=
1

2
[1∓ sin(ε+ 2gq)]P (q), (1)

where P (q) = |ψ(q)|2. We will use a Gaussian state ψ(q)
with variance σ2 for the preparation in q. As an example,
Fig. 1 shows a schematic of the measuring technique for
an optical setup, where the observable Â is represented
as the which-path degree of freedom in an interferometer,
and the phase ε controls the interference.

Under the assumption of a weak interaction, i.e.
2gσ � min {1, tan ε}, we can express

sin(ε+ 2gq)P (q) ≈ sin(ε)P
(
q − 2gσ2 cot ε

)
. (2)

The peak value of the distribution of Eq. (2) is smaller
by a factor sin ε and the position of the peak is shifted
by an amount δq = 2gσ2 cot ε with respect to P (q). The
sum and difference of the distributions take the form [25]

P̃+(q) = P1 + P2 = P (q), (3)

P̃−(q; g) = P2 − P1 ≈ sin(ε)P
(
q − 2gσ2 cot ε

)
. (4)

After a large number N of independent measurements of
q, q(1) = q1, ..., qN1 on detector 1 and q(2) = q1, ..., qN2

on detector 2, the sum distribution (3) reproduces the
quantum probability distribution of the input state, and
the difference distribution (4) has a shifted attenuated
peak similar to WVA. Note that the measured shift is

FIG. 1. Almost-balanced weak values detection technique for
measuring a small parameter g in an optical setup. The states
|0〉 and |1〉 correspond to the two paths in the interferome-
ter, a small unbalacing phase ε controls the interference, and
estimation of g is obtained from the sum and difference of
the two measured distributions. The red solid lines represent
the directly measured distributions P1 and P2, and the blue
dashed lines are the distribution components as in Eq. (1).

in the difference probability distribution and not in the
wave-function ψ(q) itself, as it is the case in WVA. In
fact, the weak values for the measurements are given by
A1,2
w = 〈Ψ1,2|Â|Ψin〉/〈Ψ1,2|Ψin〉 = ∓i cos ε/ (1∓ sin ε) ∼
∓i(1±ε), and no (anomalous) large weak value is induced.
Estimations of averaged values for ε and g under the weak
interaction approximation can be obtained as

ε = sin−1
(
N2 −N1

N1 +N2

)
, (5)

g =
[〈q〉− − 〈q〉+] tan ε

2σ2
, (6)

where 〈q〉± =
(∑N2

i=1 q
(2)
i ±

∑N1

i=1 q
(1)
i

)
/ (N2 ±N1), and

σ2 is the measured variance of P̃+(q). By making ε� 1
and preparing a large variance input state, a large shift is
induced and small values of g resolved. This behaviour is
similar to the amplification of the WVA technique with
an imaginary weak value [6], and the quadratic response
of the WVA postselection probability with respect to ε,
sin2(ε/2) ∼ ε2/4, is replaced with a (larger) linear re-
sponse of the difference signal, sin ε ∼ ε in Eq. (4).

The maximum amount of information about the pa-
rameter g that can be extracted from the measurements
is given by adding the Fisher information for both detec-
tors [26],

Fg = F1 + F2 = 4Nσ2 +O2 (2gσ cot ε) (7)

where Fi = Ni
∫∞
−∞

1
Pi

(
∂Pi

∂g

)2
dq. Eq. (6) is the effi-

cient estimator for g, which saturates the Fisher infor-
mation (7) in absence of noise [27]. The smallest pos-
sible standard deviation for measurements of g is given

by ∆g = F
−1/2
g = 1/

(
2
√
Nσ
)

, and any source of noise
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would increase it. This result shows the standard quan-
tum limit or shot-noise dependence with respect to

√
N ,

characteristic of N independent measurements.

Comparison to other techniques We now consider two
alternative approaches to measure the parameter g, and
compare them to our proposed protocol. We note that all
three techniques are upper bounded by the same Fisher
information, 4Nσ2.

The first approach is formulated by noticing that
the unitary evolution corresponds to a translation of
g in the canonical momentum of q, and that the an-
cillary system Â is not necessary. The protocol con-
sists on preparing N copies of ψ(q), applying the evo-
lution Ûst = exp(−igq̂), and performing measurements
of the conjugate momentum p (instead of q). The vis-
ibility of the shift, i.e. the ratio of the shift and the
standard deviation of the measured state, is given by
δp/σp = g/(1/2σ) = 2gσ. This approach is known as the
“standard technique” when similar comparisons to WVA
are introduced. The visibility of our technique takes the
form δq/σ = (2gσ2 cot ε)/σ = 2gσ cot ε, giving an advan-
tage of ∼ 1/ε for ε� 1 when measuring small values of g.
This amplification is an important key on how the WVA
and our protocol are superior in technical-noise-limited
experiments.

The second approach is the conventional WVA tech-
nique, where measuring q, using only one detector, is con-
ditioned to the postselection |Ψf 〉 =

(
|0〉 − eiε|1〉

)
/
√

2.
This procedure is equivalent to removing the balanc-
ing phase π/2 in Fig. 1 and tracking only the dark
port of the interferometer. The probability distribu-

tion for such a measurement is given by PWVA
2 (q) =

sin2 (ε/2)P (q−2gσ2 cot(ε/2)). So, even though the shift
of the peak of our protocol is half the shift of the peak
in the WVA technique for a given ε (for ε� 1), the peak

value of P̃−(q) is much larger than in PWVA
2 (q) since

ε � ε2/4. This result plus the background noise sub-
traction characteristic of differencing signals allow us to
experimentally induce smaller possible values of ε than in
WVA, which offers technically advantageous larger am-
plification than in WVA.

The Fisher information for the WVA technique is given

by FWVA
g = 4Nσ2 cos2(ε/2) + O2 (2gσ cot(ε/2)) [26].

WVA measurements asymptotically recover all of the
Fisher information, given by 4Nσ2, only in the anoma-
lous weak value regime (2gσ � ε/2� 1) [3], but the pro-
posed differencing technique requires only the weak inter-
action condition (2gσ cot ε � 1 in Eq. (7)) to collect all
of the information. WVA and the almost-balanced weak
values technique offer similar amplification behaviour,
and noise mitigation advantages will depend strongly on
the metrological specific experimental task. For exam-
ple, WVA could still be a favourable technique in situa-
tions where detector saturation is the predominant lim-
iting factor.

FIG. 2. Experimental setup for measuring small angular ve-
locities ω0 of a piezo-driven half wave plate (HWP). The angu-
lar rotation induces changes of polarization in the laser field.

Finally, note that both of the above techniques (stan-
dard and WVA) require prior measurements of the un-
shifted peak and variance of the input distribution P (q).
Ours does not, since the sum distribution P̃+(q) offers
these measurements simultaneously. This is one of the
advantages of using two detectors instead of just one.

Experimental implementation As a proof-of-principle
of the technique in the optical domain, we performed
measurements of small polarization changes in a linearly
polarized pulse of laser light. A piezo-driven half-wave
plate (HWP) played the role of the interferometer in
Fig. 1, where we used polarization instead of the which-
path degree of freedom, and time as the variable q (with
σ = τ). The piezo actuator rotated the HWP in time
by an angle φ+ ω0t, which defined the tunable phase as
ε = 4φ, and the angular velocity of the rotating HWP as
the parameter of interest, g = 2ω0 (see Fig. 2 and supple-
mental material for experimental details). The estimates
for ω0 using a split detector showed an almost perfect lin-
ear response and small standard deviations even without
the need of pulse averaging. The angle φ was 4.972(5)
mrad on average. This unbalanced phase is significantly
smaller than previously reported postselection angles us-
ing WVA techniques, proving the possibility of larger am-
plification under our proposed protocol.

Besides the two (standard and WVA) experimental
techniques mentioned before, we compare here our pro-
tocol to a conventional balanced optical technique for
measurements of ω0, where no ancillary system nor mea-
surements of peak shifts in a distribution are required.
By replacing the Gaussian pulse with a continuous wave
(c.w.) beam, the perfectly balanced (φ = 0) signal takes
the form I−(t) = I0 sin(ω0t) and the value ω0 can be
recovered. The measured intensities are very small com-
pared to our proposed technique, since ω0τ � φ. Thus,
the technical advantages of our technique rely principally
on time shift measurements of a Gaussian profile with
controllable amplitude (I0 sin 4φ), instead of measuring
very small voltage amplitudes as it is the case of the c.w.
conventional balanced technique. For example, in order
to obtain a visible signal (signal-to-noise ratio slightly
larger than one) using a c.w. beam, 1024 periods of in-
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tegration time were required. Our technique gives a bet-
ter signal-to-noise ratio (≥ 29) even without the need of
pulse averaging [26].

The best possible variance of our measurements are
defined by the CRB for ω0. Following equation (7),

∆ωCRB0 =
1√
Fω0

=
1

4
√
aNτ

, (8)

where a is the number of averaged pulses. The exper-
imental standard deviations of the measurements with
the split detector were estimated to be between 20 and 37
times the calculated ones using Eq. (8). Such deviation is
small considering that no frequency filters, lock-in ampli-
fiers or any other electronic processing device was used.
In order to have good photon number statistics and a
clearer raw signal, the split detector of Fig. 2 was replaced
with two single photon counting modules (SPCM). The
input power was attenuated before the Acoustic Optic
Modulator (AOM) so that the peak detected photon rate
was slightly smaller than 106 counts/s on each SPCM.
Fig. 3 shows the standard deviation on the estimation
of ω0 as a function of the number of averaged pulses a,
and its comparison to eq. (8). The system follows the
(aN)−1/2 expected shot-noise behaviour, and it demon-
strates (inset of Fig. 3) to have a precision close to the
shot-noise limit. There is a slight decrease in the relative
precision (∆ω0/∆ω

CRB
0 ) with the increase on the num-

ber of averaged pulses, which is due to the long-term drift
mentioned above. Fig. 3 shows results for a total collec-
tion time of up to 5000 sec (50×100 pulses) and a factor
of no larger than ∼1.6 away from the shot-noise limit,
in comparison to a factor of ∼1.2 for shorter acquisition
times.

Conclusions We have introduced a metrological tech-
nique for measuring small interaction parameters based
on almost balancing both signals of a joint measure-
ment. Even though the protocol does not require the
postselection of WVA techniques, anomalous amplifica-
tion is recovered. A small phase controlling the unbal-
ancing of the difference signal plays a similar role to the
postselection angle in WVA. By subtraction of the sig-
nals, background noise floor is removed and also a lin-
ear response with respect to the small phase ε is ob-
tained. Such linear response is larger than the quadratic
response of WVA techniques, and it is the principal ad-
vantage of our technique by allowing larger amplification
(smaller ε) in technical-noise-limited experiments than
in WVA techniques. In addition, no prior knowledge of
the peak and the variance of the distribution of the in-
put state is required, so systematic error-free estimation
of the parameter of interest is possible. We believe our
technique will find interesting applications on precision
metrology, within and outside optical systems. The use
of post-selection required for WVA has been challeng-
ing in experimental set-ups outside of optics. Our pro-
posed almost-balanced weak values technique overcomes

FIG. 3. Standard deviation on estimations of ω0 as a function
of the number of pulses averaged, a. Pulses with τ = 0.1 s
and N = 5.246(2) × 105 were used. The driving signal on
the piezo-mounted HWP was 60 V peak-to-peak at fr = 1
Hz. Each point (blue) was obtained from the statistics of
100 measurements, and the solid line (red) is given by the
shot-noise (eq. 8). The inset shows the ratio between the
experimental standard deviation and the shot-noise.

the necessity of post-selection and might have direct ap-
plications in non-optical experiments.

Anomalous amplification in our differencing technique
allows us to collect all of the Fisher information that
WVA techniques collect only in the optimal asymptotic
limit of a large/anomalous weak value. This result proves
that anomalous amplification can be obtained from the
weak system-meter interaction assumption alone, where
strong measurements in the system condition the reading
in the meter. Technical advantages of our proposed tech-
nique and WVA over standard techniques rely in such a
coupling to an ancillary system.

A recent related work reported experimental advan-
tages of the original proposal of Ref. [23] with re-
spect to the WVA protocol when estimating ultra-small
phases [28].
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