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Recent theories have predicted that when a supercooled liquid approaches the glass transition,
particle clusters with a special “amorphous order” nucleate within the liquid, which lead to static
correlations dictating the dramatic slowdown of liquid relaxation. The prediction, however, has yet
to be verified in 3D experiments. Here, we design a colloidal system, where particles are confined
inside spherical cavities with an amorphous layer of particles pinned at boundary. Using this novel
system, we capture the amorphous-order particle clusters and demonstrate the development of a
static correlation. Moreover, by investigating the dynamics of spherically confined samples, we reveal
a profound influence of the static correlation on the relaxation of colloidal liquids. In analogy to glass-
forming liquids with randomly pinned particles, we propose a simple relation for the change of the
configurational entropy of confined colloidal liquids, which quantitatively explains our experimental
findings and illustrates a divergent static length scale during colloidal glass transition.

PACS numbers: 64.70.kj, 82.70.Dd, 61.20.Ne

Understanding the nature of the glass transition is one
of the most challenging problems in condensed matter
physics [1–4]. Although ubiquitous and technically im-
portant, glasses still elude a universally accepted the-
oretical description. A molecular glass forms when the
temperature of a liquid is quenched below its glass transi-
tion temperature Tg. Near the transition, the relaxation
of a liquid can slow down by many orders of magnitude
with only a modest decrease of temperature by a fac-
tor of 2 or 3. The classical thermodynamic theory of
Adam and Gibbs suggests that such a super-Arrhenius
temperature dependence arises from cooperative particle
rearrangements in localized regions that are related to
the configurational entropy of supercooled liquids [5, 6].

To illustrate the static correlations associated with
these localized regions, “point-to-set” correlations have
recently been proposed in the framework of the random
first-order transition theory (RFOT) [7–11], which is a
modern development of the Adam-Gibbs theory unify-
ing physical insights from the mode coupling theory and
the spin glass theory [1, 2]. In RFOT, a gedankenexper-
iment was conceived [8], where particles outside a cavity
of radius R in a supercooled liquid are suddenly frozen
while the particles inside the cavity are allowed to freely
evolve. The point-to-set correlation length, ξ, is defined
as the minimal R such that the particles at the center of
cavity are not affected by the pinning field imposed by
the boundary. A cavity with R < ξ constrains the sys-
tem into a local minimum of the free-energy landscape
and captures an “amorphous order” particle configura-
tion nucleated within the liquid. Numerical simulations
on molecular glass-forming liquids have demonstrated an
increase of ξ close to Tg [7–11]. More recently, follow-
ing a different protocol [10], Nagamanasa et al. have
investigated semi-infinite 2D colloidal liquids with a wall
of particles pinned in an equilibrated configuration and

experimentally confirmed the existence of static point-to-
set correlations away from the pinning wall [12].

Nevertheless, important questions remain unanswered.
First, it is still an open question if and how the static
correlation develops in 3D experimental systems simi-
lar to the gedankenexperiment. Second, recent theory
has suggested that, instead of frozen equilibrated bound-
aries, confined systems with conventional boundaries ex-
hibit a qualitatively similar trend for the development
of static correlations [13]. Although confined systems
have been extensively studied in probing the dynamics
of glass-forming liquids [14–22], it has yet to be verified
if the predicted static correlation exists in these suppos-
edly familiar systems. Lastly, there still lack systematic
experiments that examine how the configurational en-
tropy associated with static correlations varies when a
confined colloidal liquid approaches the glass transition.
Quantitative understanding of the variation of configura-
tional entropy is of great importance in shaping the glass
transition theory [1, 5]. Our experiments aim to address
these questions.

In our experiments, we use fluorescent polymethyl-
methacrylate (PMMA) colloidal particles of two differ-
ent sizes ds = 1.29 µm and dl = 1.64 µm (Figs. 1a, b),
which effectively prevent the crystallization in the sys-
tem. The polydispersity of each size is smaller than 5%
and the number ratio of particles is fixed at 2:1. PMMA
particles are suspended in a mixture of decalin and cy-
clohexyl bromide that matches both the density and re-
fractive index of the particles. To prepare cavities with
fixed particle boundaries, we first disperse the colloidal
suspension into an aqueous solution of gelatin agent at 70
◦C to create an oil-in-water emulsion. When temperature
is lowered to the room temperature, the aqueous phase
solidifies through gelation, which traps a layer of parti-
cles at the oil-water interface [23]. The gel has a storage
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FIG. 1: (Color online). Colloidal liquids confined in spherical
cavities. (a) A confocal image showing a cross-section of a
suspension along the equator of a cavity of radius R = 5.4ds.
The 10-by-10 boxes at the center are used for calculating the
overlap function, qc. The suspension has φ = 0.565. (b)
A 3D reconstruction of the same suspension from a stack of
confocal images. (c) A SEM image of a large cavity. The inset
shows a zoom-in view of the boundary. A layer of particles
pinned at the interface can be identified. Scale bars in a-c are
5 µm. (d) Mean-squared displacements, 〈∆x2〉, of particles
at different distances, r, away from the boundary in a cavity
of R = 32.5ds. From bottom to top, r = 0ds (the pinned
boundary layer), 1ds, 2ds, 3ds, 4ds, 5ds, 7ds, 9ds, 11ds, 13ds,
15ds, 17ds and 19ds. Empty squares are for a bulk sample of
the same φ. The suspension has φ = 0.425. The boundary
layer shows zero motions with the constant indicating the
noise level of our tracking algorithm.

modulus G′ > 10 MPa, leading to a yield energy, G′d3s,
109 times larger than the thermal energy kBT . Thus,
particles across the interface are permanently pinned, as
confirmed by both scanning electron microscopy (SEM)
(Fig. 1c) and mean-squared displacement (MSD) mea-
surements (Fig. 1d). Particle dynamics inside cavities
are recorded using a spinning-disk confocal microscope.
The radius of cavities, R, is measured from the aver-
age position of the centers of pinned particles (Fig. 1a).
We exclude the pinned layer when measuring the volume
fraction of samples, φ [23].

MSDs show a sharp gradient in the slowdown of parti-
cle dynamics near the confining surface. Three-particle-
diameter away from the pinned layer, particles already
exhibit slow yet uniform dynamics (Fig. 1d), consistent
with particle dynamics in emulsion droplets with high-
viscosity outer fluids [22]. Thus, particle dynamics near

the center of cavities reveals the true confinement effect,
instead of the wall-induced interfacial effect that is usu-
ally present in confined colloidal systems [15–22].
With these specially prepared cavities, we measure the

correlation of configurations between the particles at the
center of cavities and the set of particles pinned at the
boundary, i.e., the point-to-set correlation. Following the
RFOT protocol [8], we choose an area of size 3.7ds×3.7ds
at the center of cavities excluding the particles with non-
uniform dynamics near the boundary (Fig. 1a) [23]. The
area is further divided into 10-by-10 small boxes. The
box size is small enough such that the number of particles
in the box i is either ni = 0 or 1. The overlap function
that quantifies the correlation between the initial config-
uration and the configuration after a time interval t is
defined as:

qc(R, t) =

∑

i〈ni(t0)ni(t0 + t)〉
∑

i〈ni(t0)〉
, (1)

where the average is taken over the initial time t0. Fig-
ures 2a and b show qc(R, t) at two different φ. At
φ = 0.41, qc decays to a plateau, which shows a weak
dependence on the degree of confinement. However, at
φ = 0.54, the confinement exerts stronger influence on
qc. For small cavities with R ≤ 16.5ds, qc decays slowly
across the entire time window of our experiments.
Two factors determine the time variation of qc: (i) the

development of a true static point-to-set correlation; (ii)
the slowdown of particle dynamics near the glass tran-
sition, which deteriorates further due to the effect of
confinement [15, 18, 21]. To characterize and then ex-
clude the influence of slow particle dynamics on qc(t),
we investigate single particle dynamics through the self-
intermediate scattering function:

Fs(Q, t) = 〈
1

N

∑

i

cos (Q · [xi(t0 + t)− xi(t0)])〉, (2)

where we choose Q = 7.4d−1
s from the position of the

first peak of the structural factor S(Q) [23], xi(t) is the
location of particle i at time t andN is the number of par-
ticles in the studied area. Note that, different from qc, Fs

represents a self correlation, equivalent to the self overlap
function qselfc ≡

∑

i〈n
s
i (t0)n

s
i (t0+ t)〉/

∑

i〈n
s
i (t0)〉, where

ns
i (t0)n

s
i (t0+t) = 1 only when the same particle occupies

the cell i at time t0 and t0 + t. Fs exhibits a character-
istic two-step relaxation above a certain φ(R) (Fig. 3a).
We find that qc reaches the plateau when Fs decays to
0 (Fig. 2c) [10, 27]. Accordingly, we measure the equi-
librium overlap, q∞ = qc(R, t = t∗) at a time t∗ when
Fs = 0. The protocol ensures that our measured q∞ is a
true thermodynamic quantity reflecting structural rather
than dynamic signatures of the system. Specifically, we
average the plateaued qc in a time window over 200 s
to reduce statistical errors. Since a bulk sample does
not develop the static correlation before the ideal glass
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FIG. 2: (Color online). Static correlations in confined col-
loidal liquids. The time variation of the overlap function, qc,
for different cavities with φ = 0.41 (a) and φ = 0.54 (b). From
top to bottom, R = 8.5ds (olive), 16.5ds (blue), 32.5ds (red)
and bulk (black). (c) Comparison of self-intermediate scatter-
ing functions, Fs(t) (symbols), and qc(t) (solid lines) at φ =
0.475. R = 4.5ds (magenta), 8.5ds (olive) and bulk (black).
Fs reaches 0 when qc decays to non-zero plateaus (dotted
lines). (d) Equilibrium overlap function, (q∞ − qrand), ver-
sus φ in the linear scale (main plot) and the semi-log scale
(inset). R = 4.5ds (magenta), 8.5ds (olive), 32.5ds (red) and
bulk (black). Dashed lines are visual guides.

transition [8, 13], q∞ of bulk samples defines qrand(φ)—
the overlap between two uncorrelated configurations at
a given φ. qrand(φ) forms the baseline for comparison,
which we obtain from both experiments and theoretical
and numerical calculations [23].

Fig. 2d shows [q∞(φ)− qrand(φ)] for different confine-
ments. q∞ deviates from qrand at φ ≈ 0.47 for the cav-
ities of R = 8.5ds, indicating a static point-to-set cor-
relation length ξ & 8.5ds, similar to that found in un-
confined 2D systems [12]. Compared with bulk samples
of the same φ, particles inside a small cavity equilibrate
and sample fewer numbers of states that are compatible
with the constraint of pinned boundaries, which, there-
fore, leads to a larger overlap [13]. Different from equi-
librated boundaries that pin particles in a single state
when R < ξ, our confining boundaries allow degener-
ate states and interstate dynamics [23]. Consistent with
RFOT, the increase of q∞ with φ becomes more drastic
as R is reduced (Fig. 2d). Since the size of amorphous-
order particle clusters increases with φ, a smaller cavity
captures the emergence of the clusters at lower φ and,
thus, exhibits a larger q∞.

Next, we investigate the influence of the static corre-
lation on the relaxation of confined colloidal liquids. We
obtain the relaxation time of liquids, τα, by fitting the
α relaxation of Fs with stretched exponential functions,

Fs(t) = A exp(−(t/τα)
β), where A is the Debye-Waller

factor (Fig. 3a). τα as a function of φ for different R
is shown in Fig. 3b. Although the relaxation is much
slower for samples under confinement [15, 18, 21], we find
that a fitting of τα(φ) using the Vogel-Fulcher-Tammann
(VFT) relation, τα(R, φ) = τ0 exp(Dφ/(φc − φ)), gives
a constant φc = 0.59 ± 0.01, independent of R (Fig. 3b
inset). φc is the volume fraction of apparent divergence
of relaxation time and indicates the ideal glass transition
in the Adam-Gibbs theory. Moreover, we find that the
fragility index, D, increases linearly with 1/R, following
D(R) = D(∞) + c(ds/R) with c = 3.56 (Fig. 3b inset).
Bulk samples have the smallest D and exhibit the most
fragile behaviors. In addition to confinement, the change
of the fragility of glass-forming liquids has also been re-
ported in experiments varying particle stiffness [28] and
in simulations varying the curvature of space [29], the
degree of polydispersity [30] and interparticle potentials
[31]. Although our results are qualitatively similar to pre-
vious experiments on 2D confined vibrated granular par-
ticles [20], it is worth noting that the change of fragility
in our 3D colloidal system is not due to the slowdown of
particle dynamics near the wall as proposed in the previ-
ous study. When analyzing qc and Fs, we only consider
particles with uniform dynamics in the center of cavities
excluding the slow particles near the boundary (Fig. 1d).

With due caution in interpreting the extrapolated
data [1, 3], we can gain a quantitative understanding of
the configurational entropy of confined colloidal liquids.
From the Adam-Gibbs theory, the relaxation of a super-
cooled liquid is given by τα ∼ exp[A0φ/sc], which leads to
the VFT relation when the configurational entropy den-
sity of the liquid sc = K(φc−φ), where K is a numerical
constant and the fragility index D = A0/K [5, 32]. τα
diverges when sc = 0 and φ = φc. Our experiments show
that the configurational entropy of colloidal liquids van-
ishes at a constant φc, independent of confinement. This
result agrees with numerical studies on glass-forming liq-
uids with randomly pinned particles [33], where the ex-
trapolated Kauzmann temperature TK is independent of
the concentration of pinned particles, ρpin. Note that
ρpin ≈ (ds/R)(1/d3s) in our confined system.

Inspired by this similarity, we propose the following
formula for the configurational entropy density of con-
fined colloidal liquids [33]: sc(φ,R) = F (R) · sc(φ,∞) =
F (R) · K(φc − φ), where sc(φ,∞) is the configurational
entropy density of bulk samples at φ, and F (R) ∈
(0, 1] is an increasing function of R with F (∞) = 1.
The relation is consistent with our experiments, i.e.,
sc(φ,R) = 0 at a constant φc independent of R. Fur-
thermore, at a finite R, the system has a reduced
number of states with sc(φ,R) < sc(φ,∞), resulting
in a non-zero (q∞ − qrand) (Fig. 2d). More impor-
tantly, under the Adam-Gibbs assumption, the relation
leads to τα(φ,R) ∼ exp (A0φ/ [F (R)K(φc − φ)]) with the
confinement-dependent fragility, D(R) = A0/[F (R)K],
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FIG. 3: (Color online). Relaxation of confined colloidal liquids. (a) Fs(t) for R = 16.5ds. From left to right: φ = 0.390, 0.445,
0.485, 0.505, 0.509, 0.510, 0.515, 0.525 and 0.545. Solid lines are the stretched exponential fittings. Fittings on the highest
volume fraction samples serve only as visual guide. (b) The α relaxation time, τα, as a function of φ. From top to bottom,
R = 8.5ds, 16.5ds, 64.5ds and bulk. τ0 = 2.87 s is the Brownian relaxation time of small particles in the dilute limit. Solid lines
are the VFT fittings. The inset shows the divergent volume fraction φc (red disks) and the fragility index D (black squares) as
a function of ds/R. The dashed line indicates φc = 0.592 and the solid line is a linear fit. (c) The scaling of the pinning length,
ξp/ds, versus φ/(φc − φ). Besides the same symbols used in (b), stars indicate R = 32.5ds. The dashed line indicates the 1/3
scaling. The inset shows the collapse of ln [τα(φ,R)/τα(φ,∞)] with a rescaled variable, ρpinξ

3

p. The solid line is a linear fit.

which successfully interprets the decrease of D(R) with
increasing R (Fig. 3b inset). Quantitatively, we have

ln

[

τα(φ,R)

τα(φ,∞)

]

= [D(R)−D(∞)]

(

φ

φc − φ

)

=

(

[D(R)−D(∞)]
R

ds

)

ρpin

(

φd3s
φc − φ

)

= cρpin

(

φd3s
φc − φ

)

. (3)

Here, we use the experimental result, [D(R)−D(∞)] =
c(ds/R) (Fig. 3b inset). Eq. (3) can be further written
in a scaling form [33]:

ln

[

τα(φ,R)

τα(φ,∞)

]

= f(ρpinξ
3
p), (4)

where f(x) = x and ξp/ds = [cφ/(φc − φ)]
1/3

. ξp repre-
sents a static length scale—the so-called pinning length—
which is related to the point-to-set correlation length ξ
through ξp/ds ∼ (ξ/ds)

1/3 near the random-first-order
transition and ξp/ds ∼ ξ/ds away from the transition
[33–35]. To directly verify the ξp scaling, we manage to
collapse ln[τα(φ,R)/τα(φ,∞)] by using a rescaled vari-
able ρpinξ

3
p (Fig. 3c inset). ξp(φ) thus obtained indeed

follows the predicted 1/3 scaling (Fig. 3c). Note that
ξp(φ) is an intrinsic property of colloidal liquids, inde-
pendent of confinement [33–35]. Furthermore, the esti-
mate of ξ based on the qc measurement gives ξ & 8.5ds at
φ ≈ 0.47 (Fig. 2d), leading to ξ > ξp ≈ 2.5ds, consistent
with the scaling relation between the two length scales.
Our experiments may help to resolve controversies over

static correlations in the glass transition. First, we con-
firm the numerical and theoretical predictions on the 1/3

scaling of the pinning length [33, 34] and illustrates a
divergent static length scale in colloidal glass transition
when φ → φc. Moreover, we show that glass-forming liq-
uids with randomly pinned particles show quantitatively
similar dynamics as colloidal liquids under spherical con-
finement [10, 13, 27, 33]. Thus, RFOT can be applied for
understanding confined colloidal liquids—an extensively
studied subject in colloidal science [15–22]. Our findings
contradict the numerical study on hard-sphere particles,
where the increase of static correlations is found to be
negligible [35]. The results are also different from the
theoretical prediction, where φc moves to lower φ under
pinning or confinement [13, 34].

It should be emphasized that although we interpret our
results within the context of RFOT, the experimental
findings are independent of specific theoretical descrip-
tions. Therefore, it is necessary to check if our experi-
ments can be explained by other competing theories in-
cluding dynamical facilitation and geometric frustration
models [3, 4]. For example, the large curvature of small
cavities induces strong geometric frustrations in particle
packings [36, 37], which modify particle dynamics that
may link to our observations [4, 36]. In addition to pro-
viding experimental results for assessing general glass-
transition theories, our study also provides new insights
into the dynamics of confined colloidal liquids and may
shed light on the behavior of atomic/molecular liquids
under nano-confinements [14].
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