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Many eukaryotic cells chemotax, sensing and following chemical gradients. However, experiments
have shown that even under conditions when single cells cannot chemotax, small clusters may still
follow a gradient. This behavior has been observed in neural crest cells, in lymphocytes, and
during border cell migration in Drosophila, but its origin remains puzzling. Here, we propose a new
mechanism underlying this “collective guidance”, and study a model based on this mechanism both
analytically and computationally. Our approach posits that contact inhibition of locomotion (CIL),
where cells polarize away from cell-cell contact, is regulated by the chemoattractant. Individual
cells must measure the mean attractant value, but need not measure its gradient, to give rise to
directional motility for a cell cluster. We present analytic formulas for how cluster velocity and
chemotactic index depend on the number and organization of cells in the cluster. The presence of

strong orientation effects provides a simple test for our theory of collective guidance.

Cells often perform chemotaxis, detecting and mov-
ing toward increasing concentrations of a chemoattrac-
tant, to find nutrients or reach a targeted location. This
is a fundamental aspect of biological processes from im-
mune response to development. Many single eukaryotic
cells sense gradients by measuring how a chemoattractant
varies over their length [1]; this is distinct from bacteria
that measure chemoattractant over time [2]. In both,
single cells have a net motion toward higher chemoat-
tractant.

Recent measurements of how neural crest cells respond
to the chemoattractant Sdfl suggest that single neural
crest cells cannot chemotax effectively, but small clusters
can [3]. A more recent report shows that at low gra-
dients, clusters of lymphocytes also chemotax without
corresponding single cell directional behavior; at higher
gradients clusters actually move oppositely to single cells
[4]. Late border cell migration in the Drosophila egg
chamber may also occur by a similar mechanism [5-8].
These experiments strongly suggest that gradient sens-
ing in a cluster of cells may be an emergent property
of cell-cell interactions, rather than arising from ampli-
fying a single cell’s biased motion; interestingly, some
fish schools also display emergent gradient sensing [9].
In fact, these experiments led to a “collective guidance”
hypothesis [6], in which a cluster of cells where each in-
dividual cell has no information about the gradient may
nevertheless move directionally. In a sense that will be-
come clear, cell-cell interactions allow for a measurement
of the gradient across the entire cluster, as opposed to
across a single cell.

In this paper, we develop a quantitative model that
embodies the collective guidance hypothesis. Our model
is based on modulation of the well-known contact inhi-
bition of locomotion (CIL) interaction [10-12], in which
cells move away from neighboring cells. We propose that
individual cells measure the local signal concentration
and adjust their CIL strength accordingly; the cluster

moves directionally due to the spatial bias in the cell-cell
interaction. We discuss the suitability of this approach
for explaining current experiments, and provide exper-
imental criteria to distinguish between chemotaxis via
collective guidance and other mechanisms where clus-
ters could gain improvement over single-cell migration
[13, 14]. These results may have relevance to collective
cancer motility [15], as recent data suggest that tumor
cell clusters are particularly effective metastatic agents

[16].
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FIG. 1. Signal-dependent contact inhibition of loco-
motion creates directed motion. a, Schematic picture of
model and origin of directed motion. Cell polarities are biased
away from the cluster toward the direction q* = EjNi 9 by
contact inhibition of locomotion (CIL); the strength of this
bias is proportional to the local chemoattractant value S(r),
leading to cells being more polarized at higher S. See text
for details. b, One hundred trajectories of a single cell and
c, cluster of seven cells. Trajectories are six persistence times
in length (120 min). Scalebar is one cell diameter. Gradient
strength |V S| = 0.025, with the gradient in the = direction.

We consider a cluster of cells exposed to a chemical
gradient S(r). We use a two-dimensional stochastic par-
ticle model to describe cells, giving each cell ¢ a position
r’ and a polarity p’. The cell polarity indicates its direc-
tion and propulsion strength: an isolated cell with polar-



ity p’ has velocity p’. The cell’s motion is overdamped,
so the cell’s velocity is p’ plus the total physical force
other cells exert on it, >3, , F*. Biochemical interac-
tion between cells alter a cell’s polarity p’. Our model is
then:

o' =p'+ ) FY (1)
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where F are intercellular forces of cell-cell adhesion and
volume exclusion, and &’ (t) are Gaussian Langevin noises
with (&7, (£)&5(t")) = 26,,075(t —t'). Greek indices p, v
run over the dimensions x,y. The first two terms on the
right of Eq. 2 are a standard Ornstein-Uhlenbeck model
[17, 18]: p’ relaxes to zero with timescale 7, but is driven
away from zero by the noise £(t). This corresponds with
a cell that is orientationally persistent over time 7.

We introduce the last term in Eq. 2 to describe con-
tact inhibition of locomotion (CIL). CIL is a well-known
property of many cell types in which cells polarize away
from cell-cell contact [11, 12, 19-21]. We model CIL by
biasing p’ away from nearby cells, toward q* = i £
where #¥ = (r’ —r7)/|r! — r/| is the unit vector pointing
from cell j to cell ¢ and the sum over j ~ ¢ indicates the
sum over the neighbors of ¢ (those cells within a distance
Dy = 1.2 cell diameters). While this is motivated by CIL
in neural crest, it is also a natural minimal model un-
der the assumption that cells know nothing about their
neighbors other than their direction #%. For cells along
the cluster edge, CIL bias g’ points outward, but for in-
terior cells q* is smaller or zero (Fig. 1a). This is consis-
tent with experimental observations that edge cells have
a strong outward polarity, while interior cells have weaker
protrusions [3].

Chemotaxis arises in our model if the chemoattrac-
tant S(r) changes a cell’s susceptibility to CIL, 3%, 8¢ =
BS(r?). This models the result of [3] that the chemoat-
tractant Sdfl stabilizes protrusions induced by CIL [3].
We also assume the cell’s chemotactic receptors are not
close to saturation - i.e. the response is perfectly linear.
If CIL occurs without chemoattractant (S = 0), as in
neural crest [3], i.e. 8¢ = By + BS(r), this will not sig-
nificantly change our analysis, only shifting the strength
of CIL at the origin. Similar results are obtained if all
protrusions are stabilized by Sdfl (7 regulated by S),
though with complications (Supplementary Information,
Fig. S1).

Analytic predictions for cluster velocity.-Our model
predicts that while single cells do not chemotax, clusters
as small as two cells will, consistent with [3]. We can
analytically predict the mean drift of a cluster of cells
obeying Eqs. 1-2:

(VYo ~ BT M- VS (3)

where the approximation is true for shallow gradients,
S(r) = Sp+r-VS. (---). indicates an average over the
fluctuating p® but with a fixed configuration of cells r’.
The matrix M only depends on the cells’ configuration,

1 i .0
My,l/ = N Zqﬂrlj (4)

where, as above, q' = iji #9. Eq. 3 resembles the
equation of motion for an arbitrarily shaped object in
a low Reynolds number fluid under a constant force
BTVS [22]: by analogy, we call M the “mobility matrix.”
There is, however, no fluctuation-dissipation relationship
as there would be in equilibrium [23].

To derive Eq. 3, we note that in our units, the ve-
locity of a single cell is equal to the force on it, i.e.
the mobility is one (Eq. 1). For a cluster of N cells,
the mean velocity of the cluster is 1/N times the to-
tal force on the cluster. As F¥ = —FJ* the cluster
velocity is V. = N1 > p’. When the cluster config-
uration changes slowly over timescale 7, Eq. 2 can be
treated as an Ornstein-Uhlenbeck equation with a time-
independent bias from CIL. The mean polarity is then
(p") = Bty ;i tY, with Gaussian fluctuations away
from the mean, ((p), — (p,))?) = o°7. The mean cell
cluster velocity is

V)= s Yo 9
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In a constant chemoattractant field, S = Sy, no net mo-
tion is observed, as 3, >, ; £ = 0. For linear or slowly-
varying gradients S(r) ~ Sy +r - V.S, and we get Eq. 3.

Cluster motion and chemotactic efficiency depend on
cluster size, shape, and orientation.— Within our model,
a cluster’s motion can be highly anisotropic. Consider a
pair of cells separated by unit distance along (cos §,sin ).
Then, M, = %cos2 0, Mgy = My, = %Cos@sin 0,
My, = %sin2 6. If the gradient is in the x direction,
then (V). = ¥ cos?0 and (V). = % cos@sin 6, where
Vo = B7|VS|. Cell pairs move toward higher chemoat-
tractant, but their motion is along the pair axis, leading
to a transient bias in the y direction before the cell pair
reorients due to fluctuations in p* (Fig. 2). We compare
our theory for the motility of rigid cell clusters (Eq. 3)
with a simulation of Eq. 1-2 with strongly adherent cell
pairs with excellent agreement (Fig. 2).

For the simulations in Fig. 2 and throughout the paper,
we solve the model equations Eqs. 1-2 numerically using
a standard Euler-Maruyama scheme. We choose units
where the equilibrium cell-cell separation (roughly 20 um
for neural crest [3]) is unity, and the relaxation time 7 = 1
(we estimate 7 = 20 minutes in neural crest [3]). Within
these units, neural crest cell velocities are on the order
of 1. We choose o = 1, so the root mean square speed
of an isolated cell is ([V|?)}/2 = 21/2071/2 ~ 1.4 mi-
crons/minute. The cluster velocity scale is Vo = B7|V.S],



which is 0.5 (0.5 microns/minute in physical units) if
VS| = 0.025 and S(0) = 1, i.e. [° changes by 2.5%
across a cell at the origin. Cell-cell forces F¥ are stiff
springs so that clusters are effectively rigid (see Supple-
mentary Information for details).
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FIG. 2. Adherent pairs of cells undergo highly
anisotropic chemotaxis. The average chemotactic velocity
of a cell pair (V). depends strongly on the angle 6 between
the cell-cell axis and the chemotactic gradient. Cell pairs also
drift perpendicular to the gradient, (V). # 0. Vo = B7|V.S| is
the velocity scale; |VS| = 0.025. Simulations are of Egs. 1-2.
We compute (V,,). by tracking the instantaneous angle, then
averaging over all velocities within the appropriate angle bin.
Error bars here and throughout are one standard deviation
of the mean, calculated from a bootstrap. Over n = 13,000
trajectories of 67 (120 minutes) are simulated.

We can also compute M and hence (V) for larger
clusters (Table S1, Supplementary Information, Fig. S2).
For a cluster of @ layers of cells surrounding a center

cell, My, = F(Q)0,, with f(Q) = 5995559, A clus-
ter with @ layers has N = 1 + 3Q + 3Q? cells; thus the
mean velocity of a Q-layer cluster is given by (V,.)/Vy =
M = A L2N=3 where M = L (Myy + My,) is the
angular average of M. We predict that (V,)/Vp first in-
creases with N, then slowly saturates to 3/2. This is
confirmed by full model simulations (Fig. 3a). We note
that (V) is an average over time, and hence orientation
(see below, Supplementary Information). We can see why
(V) saturates as N — oo by considering a large circu-
lar cluster of radius R. Here, we expect q° = af on
the outside edge, where a is a geometric prefactor and
f is the outward normal, with q* = O elsewhere. Then,
My ~ —f= 027T (Rdf)1n,(0)r, = 2ad,,, independent of
cluster radius R. A related result has been found for
circular clusters by Malet-Engra et al. [4]; we note that
they do not consider the behavior of single cells or cluster
geometry.

The efficiency of cluster chemotaxis may be measured
by chemotactic index (CI), commonly defined as the ratio
of distance traveled along the gradient (the z displace-
ment) to total distance traveled [24]; CI ranges from -1 to
1. We define CI = (V,.)/(|V]), where the average is over
both time and trajectories (and hence over orientation).
The chemotactic index CI may also be computed ana-
lytically, and it depends on the variance of V, which is
(Ve = (Vi))*) = ((Vyy — (V,))?) = 027 /N. In our model,

CI only depends on the ratio ¢ of mean chemotactic ve-
locity to its standard deviation,

CI = \/2/mc/Ly2(—c%/2)

o (V) _ BrM|VS|
\ <(Vu - <Vu>)2>

o+/T/N (6)
where Ly /5 is a generalized Laguerre polynomial. When
mean cluster velocity is much larger than its fluctua-
tions, ¢ > 1 and CI — 1, but when fluctuations are
large, |¢|] < 1 and CI — 0 (Supplementary Informa-
tion, Fig. S3). Together, Eq. 3, Eq. 6 and Table S1 pro-
vide an analytic prediction for cluster velocity and CI,
with excellent agreement with simulations (Fig. 3). We
note that (V) /Vy only depends on cluster configuration,
where Vy = B7|VS|, so (V,(N))/Vy collapses onto a sin-
gle curve as the gradient strength is changed (Fig. 3a).
By contrast, how CI increases with N depends on |V S|
and o (Eq. 6, Fig. 3b).

245 b
(@)
x 0.8
o 4 %
z =Rigid cluster theory| £0.6
S 0|V S| = 0.01 S04
<-0.5
o|V S| = 0.025 Bos
IV S| =0.05 E
0 < 0
0 O o

20 40 60 20 40 60
Number of cells in cluster Number of cells in cluster

FIG. 3. Larger cell clusters chemotax more effectively,
but their velocity saturates a, As the number of cells N
in a cluster increases, the mean velocity (V) increases with NV
but then saturates; the mean velocity can be collapsed onto
a single curve by rescaling by Vo = B7|VS|. b, The chemo-
tactic index CI also saturates to its maximum value. Black
squares and lines are the orientationally-averaged drift veloc-
ity computed for rigid clusters by Eq. 3 and Eq. 6. Colored
symbols are full model simulations with strong adhesion. Cell
cluster shape may influence (V) (Supplementary Information
Fig. S4); our calculations are for the shapes in Table S1. Er-
ror bars here are symbol size or smaller; n > 2000 trajectories
of 67 are used for each point.

In our model, clusters can in principle develop spon-
taneous rotation, but in practice this effect is small, and
absent for symmetric clusters (see Supplementary Infor-
mation).

Motion in non-rigid clusters.— While we studied near-
rigid clusters above, our results hold qualitatively for
clusters that are loosely adherent and may rearrange.
Cell rearrangements are common in many collective cell
motions [25-28]. We choose cell-cell forces F¥ to al-
low clusters to rearrange (see Supplementary Informa-
tion, [29]), and simulate Eqs. 1-2. As in rigid clusters,
(V) increases and saturates, while CI increases toward
unity, though more slowly than a rigid cluster (Fig. 4ab).
Clusters may fragment; with increasing x, 3’ increases
and the cluster breaks up (Fig. 4¢). Cluster breakup can



limit guidance — if 3 is too large, clusters are not stable.
We thus decreased 3 in Fig. 4.

In Fig. 4ab, we compute CI and velocity by averaging
over all cells, not merely those that are connected. If we
track cells ejected from the cluster, they have apparent
CI > 0, as they are preferentially ejected from the high-3?
edge (Supplementary Information). Experimental analy-
sis of dissociating clusters may therefore not be straight-
forward. Anisotropic chemotaxis is present in non-rigid
pairs, though lessened because they rotate quickly with
respect to 7 (Supplementary Information).
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FIG. 4. Nonrigid clusters may also chemotax via

collective guidance. a, As the number of cells N in a cluster
increases, the mean velocity (V) increases with N but then
saturates. b, Chemotactic index approaches unity, but slower
than in a rigid cluster. Rigid cluster theory assumes the same
cluster geometries as in Fig. 3. Averages in a-b are over
n > 20 trajectories (ranging from n = 20 for N = 217 to
n = 4000 for N = 1,2), over the time 12.57 to 507. c,
Breakdown of a cluster as it moves up the chemoattractant
gradient. X marks the initial cluster center of mass, O the

current center. |V.S| = 0.1, 8 =1 in this simulation.

Distinguishing between potential collective chemotaxis
models.-Our model explains how chemotaxis can emerge
from interactions of non-chemotaxing cells. However,
other possibilities exist for enhancement of chemotaxis
in clusters. Coburn et al. showed that in contact-
based models, a few chemotactic cells can direct many
non-chemotactic ones [14]. If single cells are weakly
chemotactic, cell-cell interactions could amplify this re-
sponse or average out fluctuations [13]. How can we
distinguish these options? In lymphocytes [4], the mo-
tion of single cells oppositely to the cluster immediately
rules out simple averaging or amplification of single cell
bias. More generally, the scaling of collective chemo-
taxis with cluster size does not allow easy discrimina-
tion. In Fig. 3, at large N, (V,) and CI saturate. As
an alternate theory, suppose each cell chemotaxes nois-
ily, e.g. p' = poVS + A?, where A are independent
zero-mean noises. In this case, (V) = pgVS indepen-
dent of N, and ((V,, — (V,,))?) ~ 1/N, as in our large-N
asymptotic results and the related circular-cluster the-
ory of [4]. Instead, we propose that orientation effects
in small clusters are a good test of emergent chemotaxis.

In particular, studying cell pairs as in Fig. 2 is critical:
anisotropic chemotaxis is a generic sign of cluster-level
gradient sensing. Even beyond our model, chemotactic
drift is anisotropic for almost all mechanisms where single
cells do not chemotax, because two cells separated per-
pendicular to the gradient sense the same concentration.
This leads to anisotropic chemotaxis unless cells integrate
information over times much larger than the pair’s reori-
entation time. By contrast, the simple model with single
cell chemotaxis above leads to isotropic chemotaxis of
pairs.

How well does our model fit current experiments? We
find increasing cluster size increases cluster velocity and
chemotactic index. This is consistent with [4], who see
an increase in taxis from small clusters (< 20 cells) to
large, but not [3], who find similar CI in small and large
clusters, and note no large variations in velocity. This
suggests the minimal version of collective guidance de-
veloped here can create chemotaxis, but does not fully
explain the experiments of [3]. There are many directions
for improvement. More quantitative comparisons could
be made by detailed measurement of single-cell statis-
tics [17, 30], leading to nonlinear or anisotropic terms
in Eq. 2. Our description of CIL has also assumed, for
simplicity, that both cell front and back are inhibitory;
other possibilities may alter collective motility [20]. We
could also add adaptation as in the LEGI model [31, 32],
enabling clusters to adapt their response to a value inde-
pendent of the mean chemoattractant concentration. We
will treat extensions of this model elsewhere; our focus
here is on the simplest possible results.

In summary, we provide a simple, quantitative model
that embodies a minimal version of the collective guid-
ance hypothesis [3, 6] and provides a plausible initial
model for collective chemotaxis when single cells do not
chemotax. Our work allows us to make an unambiguous
and testable prediction for emergent collective guidance:
pairs of cells have anisotropic chemotaxis. Although con-
siderable effort has been devoted to models of collective
motility [27, 33-41], ours is the first model of how col-
lective chemotaxis can emerge from single non-gradient-
sensing cells via collective guidance and regulation of
CIL.
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