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We observe the quasi-condensation of magnon excitations within an F = 1 87Rb spinor Bose-
Einstein condensed gas. Magnons are pumped into a ferromagnetically ordered gas, allowed to
equilibrate to a non-degenerate distribution, and then cooled evaporatively at near-constant net
longitudinal magnetization whereupon they condense. The critical magnon number, spatial distri-
bution, and momentum distribution indicate that magnons condense in a potential that is uniform
within the volume of the ferromagnetic condensate. The macroscopic transverse magnetization pro-
duced by the degenerate magnon gas remains inhomogeneous within the ∼10 s equilibration time
accessed in our experiment, and includes signatures of Mermin-Ho spin textures that appear as
phase singularities in the magnon quasi-condensate wavefunction.

Magnons are collective spin excitations of a magnet-
ically ordered medium. At thermal equilibrium, these
bosonic quasiparticles are not conserved in number, and,
thus, are not expected to undergo Bose-Einstein conden-
sation. Nevertheless, magnon condensation has been ob-
served in non-equilibrium systems that are pumped with
an excess population of magnons that decays slowly [1–3].
Magnon condensation also describes the onset of trans-
verse canted magnetic order in spin-dimer compounds at
high magnetic fields [4, 5]. Signatures of magnon conden-
sation include properties of the critical point [5, 6], the
accumulation of magnons in low-energy states [2], and
spontaneous symmetry breaking indicated by the emer-
gence of large regions of precessing transverse magneti-
zation [1, 3, 7].

Here, we report on magnon quasi-condensation in a
spinor Bose-Einstein condensate (BEC). We use F = 1
gases of 87Rb, in which spin-dependent s-wave interac-
tions favor Bose-Einstein condensation in a ferromag-
netic state [8]. Because the longitudinal magnetization
of such a gas is a nearly conserved quantity in the ab-
sence of external perturbations, we are able to produce a
long-lived excess of magnon excitations above the critical
number for magnon condensation. Like in other systems,
we detect magnon condensation by determining the criti-
cal point, observing the accumulation of magnons in low-
energy states, and probing for the spontaneous transverse
magnetization of the atomic gas.

A key finding of our work is that, at the limit of low
temperature, magnon condensation occurs as the Bose-
Einstein condensation of free particles in a uniform po-
tential. Within an inhomogeneous trapping potential, a
ferromagnetic spinor BEC equilibrates at a non-uniform
density and a uniform chemical potential. In the absence
of spin-dependent potentials and dipolar interactions [9],
rotational symmetry implies that magnon excitations of
the ferromagnetic spinor BEC are gapless, so that their
effective potential is uniform within the condensate vol-
ume. Like free particles, the magnons disperse quadrat-

ically with wavevector, with an effective mass that is,
within a weakly interacting gas, nearly equal to that of
a bare atom [9, 10]. A box-like trap for atoms in a single
spin state was recently constructed using a finely tuned
optical and magnetic trap [11]. In contrast, the box-like
potential for magnon excitations is produced naturally by
the gas itself, reducing sensitivity to experimental imper-
fections. Such potentials yield quantum gases at nearly
uniform density, allowing for precise measurements of
system properties that would otherwise be smeared out
by inhomogeneous broadening. The condensation of mi-
nority spins in a spinor Bose gas was previously observed
at high temperature where interactions play little role in
modifying the inhomogeneous trapping potential [12].

Our second finding is that following passage through
the magnon condensation transition, the magnon gas re-
mains only quasi-condensed throughout the ∼10 s equili-
bration times accessible to our experiment. In this state,
the transverse magnetization becomes macroscopic and
homogeneous over length scales longer than the thermal
de Broglie wavelength, but does not become homoge-
neous over the system size.

Our experiments begin with a Bose-Einstein condensed
87Rb gas, prepared in the ferromagnetic states with all
atoms in the |F = 1,mF = −1〉 hyperfine state, and held
in a state-independent optical trap. The gas is exposed to
a 177 mG magnetic field that is uniform to about 10 µG
within the condensate. The gas temperature is controlled
through evaporative cooling by the depth of the optical
trap. With the gas at an initial temperature ranging from
Ti ' 80 nK to 140 nK, we “pump” magnons into the gas
by applying a spatially uniform, pulsed rf magnetic field
at the 124 kHz Larmor precession frequency. The pulse
tips the atomic spin by a small angle (up to 0.7 rad) at
which the population of spin-flipped atoms – the magnon
excitations – is dominantly in the |F = 1,mF = 0〉 state.
The gas is then allowed to thermalize at constant mag-
netization and at constant trap depth for 2.5 s. By mea-
suring momentum distribution of the mF = 0 gas, we
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confirm that the magnon gas at this initial stage is not
condensed.

We then cool this magnon-imbued gas by lowering the
optical trap depth over a time tramp = 5 s and then main-
tain a constant depth for thold = 2.5 s so that the gas
reaches a steady state temperature Tf before the gas is
probed. During these times, not only does the total num-
ber of trapped atoms drop, but also the fractional pop-
ulation of magnon excitations drops owing to the prefer-
ential evaporation of magnons from the trap [13]. Never-
theless, provided that the initial magnon number is high
enough, the magnon population at the time of probing
can be sufficient to cross the magnon condensation tran-
sition. The coldest samples studied in this work are pre-
pared at Tf = 30 nK in a trap with depth kB × 122 nK
and trap frequencies ωx,y,z = 2π{23, 8.8, 160} s−1, with
final magnon populations varying between 4% and 10%
of the 6.5× 105 atoms in the mF = −1 condensate.

The properties of the magnon gas at the condensa-
tion transition are strongly influenced by the effective
potential in which the magnons propagate. This effec-
tive potential Veff(r) is the sum of the external trapping
potential V (r) (with V = 0 at the trap center) and the
interaction energy Vint(r) of an mF = 0 atom within
the mF = −1 condensate (Fig. 1a). According to mean-
field theory, Vint(r) = µ−1 − V (r) within the condensate
volume and zero otherwise, with µ−1 the chemical po-
tential of the mF = −1 gas. We derive this expression
using the Thomas-Fermi approximation and noting the
equality a−1,−1 = a−1,0 implied by rotational symme-
try of the contact interaction; here, ai,j is the s-wave
scattering length for a collision between atoms in the
|mF = {i, j}〉 states. The effective potential is then
Veff(r) = max(V (r), µ−1)[14].

The first signature of the box-like potential for magnon
excitations is the position-space distribution of the non-
degenerate magnon gas. The normal magnon density is
expected to be constant within the volume of the fer-
romagnetic condensate, and then, at low temperature
(defined as kBT � µ−1), to diminish rapidly outside
that volume. We image this distribution within our cold-
est samples, for which kBTf/µ−1 ∼ 0.7, by applying a
microwave pulse that drives atoms selectively from the
|F = 1,mF = 0〉 state to the |F = 2〉 hyperfine state, and
then imaging selectively the F = 2 atoms with resonant
probe light. The observed column density of the magnon
gas ñ0, shown in Fig. 1b, is indeed large within the area
defined by the Thomas Fermi radii of the condensate,
Rx,y = (2µ−1/mω

2
x,y)1/2 = {21, 54}µm in the imaged

directions, and is described quantitatively by the func-

tion ñ0 ∝ max
(
1− x2/R2

x − y2/R2
y, 0
)β

with β = 1/2.
In contrast, the non-uniform density of the majority-
spin condensate leads to a column density with a dif-
ferent exponent, β = 3/2. Both distributions deviate
from that of a harmonically trapped critical Bose gas,
∝ g2(exp[−x2/σ2

x − y2/σ2
y]) with gα being the polyloga-

rithm function of order α and σx,y = (kBTf/mω
2
x,y)1/2 =

{12, 31}µm.

The second manner in which the box-like potential for
magnon condensation is evident is the variation of the
critical magnon number with temperature. At each tem-
perature Tf , ranging from 30 to 114 nK, we examine the
momentum distribution of the mF = 0 atoms as a func-
tion of total magnon number. This momentum distribu-
tion is measured by releasing all atoms from their trap,
and then using state-selective magnetic-field focusing and
absorption imaging [13]. Excluding data from the central
region of the image, we fit the momentum-space column
density to several parametrizations of the distribution of
a non-condensed Bose gas at variable magnon chemical
potential and temperature Tf . These parametrizations
include gα (z(p)) with α chosen among several values
[11], which describes the expected momentum distribu-
tion of bosons in various power-law potentials, and also
the distribution expected for bosons trapped in the effec-
tive potential Veff ; here, z(p) = exp

[
(µ− p2/2m)/kBTf

]
with µ = µ0 − µ−1 being the magnon chemical poten-
tial referenced to µ−1 and ignoring the Zeeman energy
(µ = 0 at the magnon condensation transition), and p
being the momentum in the imaged plane. The size of the
excluded region is chosen such that these functions give
about the same temperature. The magnon condensate
number is then determined by subtracting the fitted func-
tion from the observed distribution and summing over
the image, including the central region. This magnon
condensate number rises linearly from zero with increas-
ing total magnon number (Fig. 2c inset) above a num-
ber Nmag,c that we identify as the critical magnon num-
ber for condensation. Different parametrizations of the
non-condensed magnon distribution give critical magnon
numbers that vary by around 10% at the same Tf for our
coldest samples.

In Fig. 2, we compare Nmag,c to predicted values for
ideal-gas Bose-Einstein condensation in one of three po-
tentials: a harmonic trapping potential, a hard-walled
box potential with a volume matching that of the mF =
−1 condensate, and the effective trapping potential Veff ,
using the experimentally determined ωx,y,z, µ−1, and Tf

at each setting [15]. The measurements agree well with
predictions based on the condensation of magnons in the
effective potential Veff . At low temperature, the mea-
sured critical magnon number tends toward that pre-
dicted for a hard-walled box potential while at high tem-
peratures (kBTf � µ−1), Nmag,c tends toward the pre-
diction for a harmonically trapped gas, as expected.

The details of the critical magnon momentum distribu-
tion serve as a third signature of condensation in a box-
like potential. We assume that the calculations based
on magnons propagating in the effective potential give
the correct critical magnon number, and use this number
to identify the momentum-space image of the magnon
gas just below the magnon condensation transition (Fig.
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FIG. 1. Magnons in a flat potential. (a) The effective po-
tential Veff for magnon excitations is the sum of the harmonic
trap potential (red) and the repulsive potential from the inho-
mogeneous ferromagnetic condensate (blue, maximum poten-
tial of µ−1), shown schematically in one dimension. (b) The
column density of a low temperature non-degenerate magnon
gas (bottom column density image) is large within the vol-
ume of the mF = −1 condensate (top column density image).
Line densities (integrated within black rectangles) are fitted
to predicted critical density in a harmonic trap (red), con-
stant density within condensate volume (green, best fit for
magnon distribution), or Thomas-Fermi condensate distribu-
tion (blue, best fit for the mF = −1 condensate). (c) Images
and integrated line profiles (purple) of magnon momentum
distribution below (left), at (center) and above (right) criti-
cal number for magnon condensation. Profiles are fitted to
Bose distributions ∝ gα(z(p)) with z(p) defined in the text
and α = {1, 1.5, 2} (black, blue, red lines, respectively), and
the distribution expected in Veff (green).

1b). This distribution is more sharply peaked at low
momentum than predicted for atoms expanding from a
harmonic potential. The data are consistent with the ex-
pected momentum-space distribution of magnons in the
effective potential, although we do not observe the ex-
pected sharp cusp at zero momentum (α = 1/2 for a
uniform potential), likely owing to limited momentum
resolution.

Magnon condensation is a symmetry breaking phase
transition. In our spinor gas system, prior to magnon
condensation, the longitudinally magnetized spinor Bose-
Einstein condensate retains the O(2) spin-gauge symme-
try that describes the combination of rotations about the
longitudinal (magnetic field) axis and the multiplication
of the condensate order parameter by a phase. Upon
magnon condensation, this symmetry is broken, the fer-
romagnet now acquiring a non-zero transverse magneti-
zation that serves as the order parameter for the magnon
condensate.

We detect this transverse magnetization using absorp-
tive state-selective in-situ imaging [9]. We apply an rf
pulse to rotate the atomic spins by π/2 and then mea-
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FIG. 2. The measured critical magnon number Nmag,c (black
markers) is compared to the expected value (blue, red, pur-
ple points, respectively) for magnons in a harmonic, box (size
defined by condensate volume), and Veff . Shaded lines are
guides to the eye. Error bars on model predictions account
for statistical uncertainties in experimental parameters. Inset:
The magnon condensate number, shown for kBTf/µ−1 = 0.7,
is the integrated residual above the fits to the non-condensed
magnon momentum distributions using one of four fit func-
tions: gα(z(ρ)) with α = 1 (squares), 1.5 (triangles), or 2
(circles), or the predicted distribution in the effective poten-
tial (diamonds). A linear fit shows the magnon condensate
number increasing linearly above Nmag,c; error bars are statis-
tical. Extracted measured critical magnon numbers from the
four fitting functions are shown in the main plot (diamonds,
squares, triangles, circles with a decrease in grayscale).

sure the column density in each of the Zeeman sublevels
using a sequence of brief microwave and optical probe
pulses. The difference in the mF = ±1 column densities
gives one component of the dimensionless transverse col-
umn magnetization M̃x at the start of the several-ms-long
measurement procedure. We then apply a second, care-
fully timed π/2 spin rotation, again measure the Zeeman
state distribution, and subtract the mF = ±1 images to
obtain M̃y. We intersperse spin-echo pulses within the
measurement sequence to control for magnetic field vari-
ations, similar to Ref. [16].

Assuming the majority spin condensate order param-
eter ψ−1(r) is known, the magnon condensate wave-
function ψ0(r) is characterized interferometrically by the
transverse magnetization through the relation MT (r) =
Mx(r) + iMy(r) =

√
2ψ∗

−1(r)ψ0(r). This relation is valid
when the longitudinal magnetization of the gas is suffi-
ciently large. We measure instead the transverse column
magnetization, M̃T , which can be taken as M̃T (ρ) =
eiϕ(ρ)

√
2ñ−1,c(ρ)ñ0,c(ρ) if we assume the atomic spin

state of the condensed atoms is constant along the imag-
ing axis. Here, ñmF ,c is the column density of the mF

component of the condensate, ϕ is the magnon conden-
sate phase (up to a uniform offset), and ρ is the position
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in the imaged plane. We assume that the majority-spin
condensate has uniform phase given that it is prepared by
very gradual evaporative cooling, and that it contains no
vortex excitations as confirmed by high-resolution imag-
ing after a short time of flight from the optical trap.

The images taken on samples with sufficiently large
magnon populations (Fig. 3a) show significant transverse
magnetization within the boundary of the ferromagnetic
condensate. The magnon condensate number implied
by these images, taken as the integral of |M̃T |2/2ñ−1,c

over the condensate area, is consistent with the magnon
condensate numbers determined from momentum-space
measurements [17].

This transverse magnetization is inhomogeneous, both
in magnitude and in phase, so that the degenerate
magnon gas is more aptly described as a quasi-condensate
[18]. The spatial Fourier power spectra of such im-
ages (Fig. 3b) are concentrated in a narrow and nearly
isotropic ring with spatial wavenumber kr [19]. The
indicated order-parameter domain size ξ = kr/(2π) ∼
17µm is similar to that observed in previous studies of
non-equilibrium 87Rb spinor Bose-Einstein condensates
[16, 20, 21]. These domains, and the associated ring in
Fourier space, are observed only for magnon numbers
above the critical number; images for samples with fewer
magnons show no significant transverse magnetization.

The images of the magnon quasi-condensate include
singularities, regions encircled by a path along which
the amplitude of the transverse magnetization is non-
zero while the magnon condensate phase ϕ winds around
by ±2π. We observe several such singularities in each
repetition of the experiment, with the sign of the phase
winding varying randomly. We identify these features as
Mermin-Ho spin textures [22–24], in which the orienta-
tion of the magnetization spans a small cap about the
longitudinal axis.

The inhomogeneity of the magnon quasi-condensate
may be the result of the gas having been quenched rapidly
across the magnon condensation transition. This transi-
tion occurs simultaneously throughout the uniform effec-
tive potential experienced by the magnons. The charac-
teristic domain size ξ in our measurements does not agree
directly with the Kibble-Zurek theory [25, 26] in two re-
gards. First, the Kibble-Zurek theory predicts a domain
size, just after the quench, on the order of the thermal
deBroglie wavelength λdB = (2π~2/mkBTf)

1/2 = 1.1µm,
which is far smaller than observed. Second, we imaged
magnon condensates produced with variable ramp times
tramp, tuning the quench time tQ = Tc/(dT/dt) between
3 and 18 s, and observed no significant change in the char-
acteristic domain size. In contrast, Kibble-Zurek theory
predicts a variation by a factor of 1.8 [27–29].

The discrepancy with Kibble-Zurek theory can be ex-
plained by the coarsening of the magnon condensate or-
der parameter following a quench. By varying thold be-
tween 3.5 and 11 s with a fixed tramp = 5 s, we observe
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FIG. 3. Inhomogeneous transverse magnetization measured
for four experimental repetitions, in coldest samples and with
∼ 10% magnon fraction, with hue and brightness representing
orientation and amplitude, as indicated by color wheel. Iden-
tified phase singularities are marked by white circles. The
inset highlights one such singularity, with the dashed white
line showing a path along which the magnon order parameter
phase winds by 2π. (b) Spatial Fourier power spectral density
(PSD) of transverse magnetization averaged over 20 experi-
mental repetitions, for magnon fraction increasing from 7%
(below critical value) to 10% (above critical value). White
dashed circle marks 2π/kr. Red dashed circle represents the
imaging resolution.

only slight coarsening that increases ξ from 16 to 22 µm,
similar to observations made in Ref. [16]. However, it
may be that the magnon condensate is initially disor-
dered in three dimensions, with characteristic domain
size on the order of λdB, and then rapidly coarsens until
the correlation length becomes a few times the length of
the mF = −1 condensate in its narrowest (vertical) di-
mension, at which point our images, which are column-
integrated and limited to an imaging resolution of around
7 µm, can finally reveal significant transverse magne-
tization; for this length, we may take the condensate
Thomas-Fermi diameter of 6 µm at the low-temperature
trap setting. Upon the dimensional crossover to a two-
dimensional system, coarsening dynamics might slow sig-
nificantly.

Magnon condensation in a spinor gas offers a new
system in which to study the Bose-Einstein condensa-
tion of quasi-particle excitations and of quantum gases
in a uniform potential. Our measurements of the crit-
ical magnon number, density, and momentum distribu-
tion agree with predictions based on equilibrium ther-
modynamics of particles held in a flat-bottomed effective
potential. However, detailed measurements of the non-
equilibrium dynamics of the magnon quasi-condensate
present challenges for further study. Measurements of
the real-time evolution of the gas magnetization, using re-



5

peated non-destructive spin-sensitive imaging [9, 30] with
finer spatial resolution than achieved here, may address
these challenges.
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