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A conformal field theory (CFT) in dimension d ≥ 3 coupled to a planar, two-dimensional, con-
formal defect is characterized in part by a “central charge” b that multiplies the Euler density in
the defect’s Weyl anomaly. For defect renormalization group flows, under which the bulk remains
critical, we use reflection positivity to show that b must decrease or remain constant from ultraviolet
to infrared. Our result applies also to a CFT in d = 3 flat space with a planar boundary.

Introduction. Monotonicity theorems, such as
Zamolodchikov’s c-theorem [1], are of fundamental
importance in quantum field theory (QFT). They make
precise the intuition that the number of degrees of
freedom (DOF) should decrease under renormaliza-
tion group (RG) flow. They therefore place stringent
constraints on the low-energy physics of QFTs. For
example, they can eliminate the possibility of RG limit
cycles, and can eliminate potential low-energy dualities
between QFTs (see e.g. [2]).

An ideal monotonicity theorem consists of six con-
straints on an observable X, treated as a function over
the space of couplings in the QFT:

1. The value of X at the ultra-violet (UV) fixed point
is greater than or equal to its value at the infra-red
(IR) fixed point: XUV ≥ XIR (the “weak” form);

2. X strictly decreases or remains constant along the
RG flow (the “strong form”);

3. X decreases along a gradient along the RG flow
(“strongest form”);

4. X is stationary at fixed points (and nowhere else);

5. X is bounded from below;

6. X counts only non-topological DOF.

These are listed roughly in decreasing order of impor-
tance: 1 is essential, 2 and 3 are highly desirable, and
4 through 6 are appealing but expendable. Obviously
3 implies 2, and 2 implies 1. While 1, 5 and 6 can be
deduced from fixed points alone, 2, 3, and 4 require an
“X-function” defined everywhere along the RG flow.

Ideally, the derivation of a monotonicity theorem
should be non-perturbative, relying only on generic prop-
erties of a “healthy” QFT. To date, the standard as-
sumptions are that the QFT is renormalizable, local, and
for Lorentzian QFTs, Poincaré-invariant and unitary, or
for Euclidean QFTs, Euclidean-invariant and reflection-
positive. The only other, more restrictive, assumption is
that RG fixed points are conformal field theories (CFTs).

The gold standard remains Zamolodchikov’s c-
theorem, for QFTs in dimension d = 2 [1]. Zamolod-
chikov identified X as a particular linear combination

of two-point functions of the stress tensor and its trace,
called the “c-function,” which at fixed points reduces to
the central charge c. Zamolodchikov established con-
straints 2 and 4 using the assumptions above, and con-
straint 3 within conformal perturbation theory to second
order, while reflection positivity implies 5 and c’s defini-
tion implies 6.

Zamolodchikov’s arguments rely crucially on the spe-
cial form of the stress tensor two-point function in d = 2,
and are thus difficult to generalize to d > 2. Moreover,
for a CFT in d = 2, a single number, c, fixes the Virasoro
algebra, Weyl anomaly, thermal entropy, and more. The
same is not true for CFTs in d > 2, raising the question
of which X to target for a proof.

For even d > 2, Cardy targeted a, the coefficient of the
Euler density in the Weyl anomaly [3]. By definition, a
satisfies constraint 6. In d = 4, positivity of energy flux
at spatial infinity [4] implies that a satisfies constraint 5.
Moreover, in d = 4 Jack and Osborn established a strong
a-theorem valid to all orders in perturbation theory [5?
? ], although their method, based on local Weyl consis-
tency, is difficult to generalize to d > 4 [? ]. Komar-
godski and Schwimmer provided a non-perturbative ar-
gument for the weak form in d = 4, aUV ≥ aIR [6, 7] (see
also [8]). Their method, which uses an external scalar
field to match UV and IR Weyl anomalies [9], is also
difficult to generalize to d > 4 [10]. Evidence for an a-
theorem in d = 6 appears in [11–13].

No Weyl anomaly exists in odd d, making these cases
more challenging still. To date, the leading candidate
for X is the sphere “free energy” F ≡ (−1)(d−1)/2 lnZSd ,
with ZSd the renormalized partition function of a Eu-
clidean CFT on a sphere, Sd [14, 15]. In d = 1, S1 is the
“thermal circle,” so F is minus the thermal free energy.
Positivity of the heat capacity then immediately implies a
strong F -theorem. In d = 3, F 6= 0 in pure Chern-Simons
theory [16], manifestly violating constraint 6. Using a re-
lation between F and disk entanglement entropy (EE) at
fixed points [17], Casini and Huerta established a strong
F -theorem using strong subadditivity of EE [18]. How-
ever, their F -function violates constraint 4 [19]. An al-
ternative is mutual information, which obeys constraint 2
and possibly 5 and 6, but violates 4 [20]. For discussions
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about F -theorems in d > 3, see for example [21, 22].
Another class of monotonicity theorems concern DOF

at a boundary or defect. For example, consider a bound-
ary CFT (BCFT), i.e. a CFT on a space with a boundary,
with conformally-invariant boundary conditions (BC).
Under a boundary RG flow, triggered by a relevant opera-
tor at the boundary, the bulk remains critical, and the IR
fixed point is again a BCFT. For such RG flows in d = 2,
Affleck and Ludwig proposed a monotonicity theorem for
ln g ≡ − lnZHS2 + 1

2 lnZS2 , with ZHS2 the BCFT parti-

tion function on a hemisphere, HS2 [23]. Friedan and
Konechny established a strongest g-theorem using ther-
modynamic entropy [24]. The g-theorem applies also to
point-like defects, via the folding trick. Conjectures for
g-theorems in d > 2 appear in [25–28].

In this Letter we establish a weak g-theorem for Eu-
clidean BCFTs in d = 3, and for Euclidean defect CFTs
(DCFTs) in d ≥ 3 with a two-dimensional planar defect.
Our X is b, the coefficient of the Euler density in the
boundary or defect Weyl anomaly. Using the standard
assumptions above, we establish bUV ≥ bIR for boundary
or defect RG flows. Our argument is an adaptation of
Komargodski’s argument for the weak c-theorem [7]. Ul-
timately, our “b-theorem” is equivalent to the conjectures
of [25–27] for two-dimensional defects or boundaries.

The Systems. We begin with local, reflection-positive,
parity-invariant Euclidean CFTs in d ≥ 3. Ultimately
we are interested in these CFTs in flat space, but to
study their Weyl anomalies we will put them in curved
space, unless stated otherwise. We thus introduce an ex-
ternal metric gµν [29]. The CFT’s generating functional
of renormalized, connected correlators, W ≡ − lnZ[gµν ],
with Z[gµν ] the renormalized partition function, is in-
variant under coordinate reparameterizations and Weyl
transformations, gµν → e2ωgµν (with ω a real function
of space), up to the Weyl anomaly. These invariances
imply that the flat-space theory is invariant under the
action of the conformal algebra, so(d + 1, 1), generated
by infinitesimal rotations, translations, dilatations, and
special conformal transformations.

Next we introduce a two-dimensional defect. For ex-
ample, we can impose BC on CFT fields along a two-
dimensional subspace, or introduce fields localized there,
with or without couplings to the bulk CFT. Although
ultimately we are interested in flat-space CFTs with pla-
nar defects, we will put them in curved space, and keep
the defect’s position arbitrary, unless stated otherwise.
We assume the defect preserves locality, reflection posi-
tivity [30], parity, and reparameterization and Weyl in-
variances, up to a Weyl anomaly. The resulting theory is
a DCFT. Reparameterization and Weyl invariance imply
that the flat-space DCFTs are invariant under the action
of the so(d − 1, 1) × so(d − 2) subalgebra of so(d + 1, 1)
that preserves the planar defect.

Another option, special to d = 3, is that the bulk CFT
changes across the defect. Indeed, a BCFT can be viewed

as a DCFT with an “empty” CFT on one side of the
defect. Our results will thus apply to BCFTs, but we will
only explicitly discuss DCFTs, unless stated otherwise.

We are interested in defect RG flows in flat space,
meaning flows triggered by a relevant operator at the
defect, whose endpoints are flat-space DCFTs with pla-
nar defects. For example, consider a DCFT described by
a local Lagrangian LDCFT = LCFT + δd−2Ldefect, with
LCFT the bulk CFT’s Lagrangian, δd−2 a Dirac delta
function which restricts to the defect, and Ldefect rep-
resenting all defect terms. We trigger a defect RG flow
by deforming LDCFT → LDCFT + δd−2λO, with O a di-
mension ∆UV < 2 parity-invariant scalar operator, and
λ a dimensionful coupling constant. Such an O may be
built out of defect fields alone, bulk operators evaluated
at the defect, or both. For example, we can give masses
to defect fields, or change the BC on bulk fields.

Returning to curved space and defects of arbitrary
position, let xµ and σa (a = 1, 2) be bulk and de-
fect coordinates. Embedding functions Xµ(σa) then de-
scribe the defect’s position. The defect’s induced met-
ric, ĝab ≡ gµν∂aX

µ∂bX
ν , describes the defect’s intrinsic

curvature. The bulk covariant derivative, ∇µ, induces a

defect covariant derivative, ∇̂a. The second fundamental
form, IIµab ≡ ∇̂a∂bXµ, describes the defect’s extrinsic cur-
vature. More details about the defect’s geometry appear
in the Supplement.

A key ingredient for us will be the stress tensor, Tµν .
We define renormalized, connected correlators of Tµν ,
and the “displacement operator,” Dµ, as follows. The
renormalized partition function Z is a functional of gµν ,
Xµ, and the set of all marginal or relevant couplings,
{λ}. We define one-point functions 〈Tµν〉 and 〈Dµ〉 from
the variation of W ≡ − lnZ[gµν , X

µ, {λ}] with respect
to gµν and Xµ, respectively:

δW =− 1

2

∫
ddx
√
g δgµν〈Tµνb 〉 (1)

−
∫
d2σ
√
ĝ

[
1

2
δgµν〈Tµνd 〉+ δXµ〈Dµ〉+ . . .

]
,

where g and ĝ are the determinants of gµν and ĝab, respec-
tively, and . . . indicates possible terms involving deriva-
tives of δgµν normal to the defect. Re-writing the defect’s
volume as

∫
d2σ
√
ĝ =

∫
ddx
√
g δd−2, we see from (1)

that 〈Tµν〉 receives distinct bulk and defect contributions
(hence the subscripts),

〈Tµν〉 = 〈Tµνb 〉+ δd−2〈Tµνd 〉+ . . . , (2)

where . . . indicates terms involving normal derivatives of
δd−2, coming from the . . . in (1). Higher-order variations
of W give higher-point correlators, in the usual way.

Reparameterization invariance leads to Ward identities
relating 〈Tµν〉 and 〈Dµ〉, which we present in the Sup-
plement (specifically (B6)). However, we only need one
fact about the reparameterization Ward identities: the
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defect stress tensor Tµνd is not conserved. Energy and
momentum can flow between bulk and defect, violating
conservation of Tµνd . As a result, we cannot simply copy
Zamolodchikov’s derivation of the c-theorem, which relies
crucially on conservation of the two-dimensional stress
tensor. That is why we turn instead to Komargodski
and Schwimmer’s method [6, 7], based on Weyl anomaly
matching [9].

Weyl Anomaly. CFTs are Weyl-invariant only up to
a potential anomaly. That is, W may change under an
infinitesimal Weyl variation, δωgµν = 2ωgµν , δωX

µ = 0:

δωW = −
∫
ddx
√
g ωA, (3)

where the local function A is built out of external fields,
such as gµν . Indeed, we will only consider contributions
to A built from gµν alone. Comparing (3) with (1) leads
to the Weyl Ward identity, 〈Tµµ〉 = A. The general
form of A can be determined by solving the Wess-Zumino
(WZ) consistency condition [31], which comes from de-
manding that two successive Weyl transformations of W
commute (the Weyl group is Abelian). For a CFT in
even d, solving the WZ consistency condition gives [32]

A = (−1)
d
2 +1 4a

d!vol(Sd)
Ed +

∑
I

cIWI , (4)

with Ed the Euler density and the WI the Weyl-covariant
scalars of weight −d. WZ consistency allows total deriva-
tives in (4), which we eliminated using local countert-
erms. WZ consistency leaves undetermined the “central
charges” a and the cI . For odd d, A = 0 [32].

In a DCFT, A receives distinct bulk and defect con-
tributions, A = Ab + δd−2Ad, where the bulk term Ab

takes the form for A in a CFT, described above. To our
knowledge, for the defect term, Ad, the WZ consistency
condition has been solved in only two cases: for a point-
like defect in d = 2 [33] and for a two-dimensional defect
in d ≥ 3 [34, 35] (sometimes called the “Graham-Witten”
anomaly [36]). We require the latter, which is, using local
counterterms to cancel normal derivative terms [34, 35],

Ad =
1

24π

(
b R̂+ d1 I̊I

µ

abI̊I
ab

µ + d2Wabcdĝ
acĝbd

)
, (5)

with R̂ the Ricci scalar of ĝab, I̊I
µ

ab the traceless part of
IIµab, and Wabcd the pullback of the bulk Weyl tensor.
WZ consistency leaves undetermined the “defect central
charges” b, d1, and d2. (The Weyl tensor vanishes iden-
tically in d = 3, so d2 exists only for d ≥ 4.)

Under a Weyl transformation,
√
ĝ R̂ transforms by a

total derivative (that term is type A in the classification

of [32]), while
√
ĝ I̊I

µ

abI̊I
ab

µ and
√
ĝ W ab

ab are each Weyl-
invariant (type B). Our b is thus analogous to a, which
obeys the c- or a-theorem in d = 2 or 4, respectively,
while d1 and d2 are analogous to the cI .

Monotonicity of b. We will now argue that bUV ≥ bIR
for defect RG flows, using Komargodski and Schwim-
mer’s method [6]. In particular, we will closely follow
Komargodski’s argument for the weak c-theorem [7].

Explicit breaking of Weyl invariance implies 〈Tµµ〉 6=
A. In flat space with a planar defect, A = 0, so explicit
breaking of Weyl invariance implies 〈Tµµ〉 6= 0. For a de-
fect RG flow, that occurs only at the defect: 〈(Td)µµ〉 6= 0,
while 〈(Tb)µµ〉 = 0, up to contact terms at the defect [24].
In curved space of even d and/or for a curved defect,
generically A 6= 0. In that case, for a defect RG flow, ex-
plicit breaking of Weyl invariance only at the defect may
lead to different defect central charges in the UV and
IR, while bulk central charges will remain unchanged:
AUV

d 6= AIR
d while AUV

b = AIR
b .

However, we can undo explicit breaking of Weyl invari-
ance by treating every relevant coupling λ as a “spurion.”
That is, we promote λ to a function of defect coordi-
nates, λ → λ(σa), and then endow λ(σa) with a non-
trivial Weyl transformation to restore Weyl invariance,
up to the anomaly, leading to a modified Weyl Ward
identity. Concretely, for a DCFT with a Lagrangian
deformed as LDCFT → LDCFT + δd−2λO, as described
above, we take λ → λ(σa), and under gµν → e2ωgµν we
demand λ(σa) → e(∆UV−2)ωλ(σa). Following [6, 7], we
will implement such a spurionic Weyl invariance using a
non-dynamical, external scalar field, τ . Specifically, we
re-define λ → λ′e(∆UV−2)τ , and under gµν → e2ωgµν we
demand τ → τ + ω and λ′ → λ′.

The renormalized partition function Z is now a func-
tional of gµν , Xµ, and τ , as well as the set of couplings
{λ′}. We define T as the operator conjugate to τ ,

〈T 〉 ≡ 1√
ĝ

δW

δτ
. (6)

Under an infinitesimal Weyl variation, δW takes the form
in (1), with δωgµν = 2ωgµν , δωX

µ = 0, and now an
“extra” term

∫
d2σ
√
ĝ〈T 〉δτ with δτ = ω. From (3) we

thus find

〈Tµµ〉 − δd−2〈T 〉 = A, (7)

so that the Weyl Ward identity is unmodified in the bulk,
〈(Tb)µµ〉 = Ab, but modified at the defect. In flat space
with a planar defect, where A = 0, (7) says that 〈T 〉
cancels 〈(Td)µµ〉 6= 0 and any contact terms in 〈(Tb)µµ〉,
and thus restores Weyl invariance, as advertised (τ is
a “conformal compensator”). In curved space of even d
and/or with a curved defect, where generically A 6= 0, (7)
says that 〈T 〉 acts to maintain A’s UV value at all scales,
including in particular the value at the defect. In other
words, τ must account for the difference AUV

d −AIR
d 6= 0.

This is Weyl anomaly matching [9].
In flat space with a planar defect, the result 〈Tµµ〉 =

δd−2〈T 〉 shows that τ becomes conjugate to (Td)µµ plus
contact terms in (Tb)µµ. As a result, 〈T (σ)T (0)〉 has the
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same long-distance behavior as the two-point function of
Tµµ in a d = 2 flat-space QFT,

〈T (σ)T (0)〉 ∝ 1

|σ|2∆IR
, (8)

where ∆IR > 2 is the dimension of the leading irrelevant
deformation at the defect of the IR DCFT. The defect’s
planar symmetry and (8) together imply that the most
general form for 〈T (σ)T (0)〉’s Fourier transform is, for
small momentum k along the defect,

〈T (k)T (−k)〉 = α0 + α2k
2 +O(k2∆IR−2), (9)

where α0 and α2 are constants that can depend on {λ′},
and the O(k2∆IR−2) terms arise from (8). For small k
the “soft” O(k2∆IR−2) terms are sub-leading compared
to the contact terms α1 and α2k

2, because 2∆IR−2 > 2.
Similar statements apply for higher-point correlators of
T with itself and with Tµνd . The IR DCFT’s effects on
T ’s correlators are thus suppressed at small k, or equiv-
alently, in the IR τ decouples from the IR DCFT.

That decoupling will persist to gµν 6= δµν , and will be
explicit in the low-energy Wilsonian effective action:

Seff = SIR
DCFT + Sτ +O(∂2∆IR−2), (10)

where SIR
DCFT is the IR DCFT’s effective action, Sτ is τ ’s

effective action, up to two derivatives, and O(∂2∆IR−2)
represents τ ’s soft couplings to the IR DCFT. All terms
in (10) are functionals of gµν , Xµ, and τ , except SIR

DCFT,
which does not depend on τ because of the decoupling.

Since τ has support only at the defect, Sτ consists
of terms only at the defect. Under an infinitesimal
Weyl variation, δωS

IR
DCFT produces the IR Weyl anomaly,

AIR = AUV
b + AIR

d , so for Weyl anomaly matching Sτ
must include WZ terms, SWZ, such that δωSWZ produces
AUV

d −AIR
d . Together with locality and reparameteriza-

tion invariance, that fixes Sτ ’s form (superscripts count
derivatives of τ) [7]:

Sτ ≡ S(0) + S
(0)
WZ + S

(2)
WZ, (11)

S(0) ≡
∫
d2σ
√
ĝ

{
−β0

4
e−2τ + β1R̂+ β2I̊I

2
+ β3Wab

ab

}
,

S
(0)
WZ ≡ −

1

24π

∫
d2σ
√
ĝ τ
{

∆bR̂+ ∆d1I̊I
2

+ ∆d2Wab
ab
}
,

S
(2)
WZ ≡

∆b

24π

∫
d2σ
√
ĝ ∂aτ∂

aτ,

where β0, . . . , β3 are constants that can depend on {λ′},
while ∆b ≡ bUV − bIR, and similarly for ∆d1 and ∆d2.

In (11), if we set gµν = δµν , Fourier transform, com-
pute 〈T (k)T (−k)〉, and compare to (9), then we find
β0 = α0 and ∆b = −12πα2. The latter result provides a
flat-space definition of ∆b, and after a Fourier transform
back to position space, implies a sum rule [7]

bUV − bIR = 3π

∫
d2σ|σ|2〈T (σ)T (0)〉. (12)

The integral in (12) is finite by power counting, plus no
counterterms exist that can contribute to the right-hand-
side of (12). Demanding reflection positivity in (12),
〈T (σ)T (0)〉 ≥ 0, thus leads to our main result,

bUV ≥ bIR. (13)

For a marginally relevant deformation, 〈T (σ)T (0)〉 be-
haves at small |σ| as (ln |σ|)/σ4. However, the integral
in (12) still converges, so again we find (13) [7, 8].
Tests. We test our result (13) in three examples.
First is the free scalar BCFT in d = 3, with a Neumann

BC. A defect mass term triggers a defect RG flow to a
Dirichlet BC. In the Supplement, we compute b = 1/16
for the Neumann BC (correcting a result of [25]) and
b = −1/16 for the Dirichlet BC, so indeed bUV > bIR.
The result b < 0 for the Dirichlet BC raises the question
of whether b is bounded from below (constraint 5).

Second is a DCFT deformed by a weakly relevant de-
fect operator O of dimension ∆UV = 2 − ε with ε � 1.
The change in b can be computed using defect conformal
perturbation theory, which involves correlation functions
of O in the undeformed DCFT. The DCFT’s SO(3, 1)
symmetry guarantees that these correlators have the
same form as those of weakly relevant scalar operators
in a d = 2 CFT, hence the calculation becomes iden-
tical to that for the change in c using ordinary confor-
mal perturbation theory in d = 2 [37]. Assuming the
OO → O OPE coefficient C is positive, we thus find

bUV − bIR = ε3

C2 ≥ 0 [37].
Third is the N = 6 supersymmetric (SUSY), strongly-

coupled U(N)k × U(N)−k Chern-Simons matter the-
ory [38] with N and N/k5 � 1, coupled to Nf
bi-fundamental hypermultiplet flavor fields at a two-
dimensional defect, preserving N = (3, 3) SUSY, with
Nf � N [39]. That DCFT is holographically dual to
d = 11 supergravity on d = 4 Anti-de Sitter space, AdS4,
times S7/Zk, with N units of four-form flux, plus Nf
probe M5-branes along AdS3×S3/Zk. Graham and Wit-
ten’s holographic result [36] gives b = 3

2NNf . A SUSY
mass for ∆Nf of the hypermultiplets triggers a defect
RG flow to the same DCFT, but now with Nf − ∆Nf
hypermultiplets, hence bUV > bIR.
Discussion. Our result (13) can be viewed either as

a higher-dimensional g-theorem, or as a generalization
of the weak c-theorem to include coupling to a higher-
dimensional CFT. Indeed, the g-theorem itself can be
viewed as a monotonicity theorem for a d = 1 QFT with
an RG flow coupled to a d = 2 CFT. A natural question
is whether every monotonicity theorem survives coupling
to a higher-dimensional CFT.

Other natural questions arise from further compar-
isons to existing monotonicity theorems. For example,
the strong c- and F -theorems can be established using
strong sub-additivity of EE [18, 20, 40, 41]. Can we es-
tablish a strong(est) b-theorem, for example using EE?
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In d = 2, the g-theorem can be violated by a bulk RG
flow [42]. Can a bulk RG flow violate the b-theorem?

Our result may have implications for many theoretical
and experimental systems. One example is a graphene
nanoribbon, which at low energy is described by a d = 3
CFT (free massless Dirac fermions) [43] on a space with a
boundary. Another example is the critical Ising model in
d ≥ 3 with a planar defect, or in d = 3 with a boundary.
Although we assumed parity invariance, our result (13)
is straightforward to generalize to parity-violating theo-
ries, and hence may have implications for quantum Hall
systems. More abstractly, in string and M-theory, brane
intersections can give rise to various DCFTs and BCFTs
in d ≥ 3. What consequences our result may have for all
of these systems deserves exploration.[44]
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