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We propose that the observed matter-antimatter asymmetry can be naturally produced as a
byproduct of axion-driven slow-roll inflation by coupling the axion to standard-model neutrinos. We
assume that GUT scale right-handed neutrinos are responsible for the masses of the standard model
neutrinos and that the Higgs is a light field during inflation and develops a Hubble scale root-mean-
square value. In this set up, the rolling axion generates a helicity asymmetry in standard-model
neutrinos. Following inflation, this helicity asymmetry becomes equal to a net lepton number as the
Higgs condensate decays and is partially re-processed by the SU(2)L sphaleron into a net baryon
number.

Axions are attractive candidates for the inflaton be-
cause an approximate shift symmetry protects their po-
tential from large radiative corrections [1]. However, the
simplest models are difficult to realize within UV com-
plete theories because a Planck-scale axion decay con-
stant is required in order to match the amplitude and
scale dependence of the observed curvature fluctuations.
Recently, interest in axionic models has been revived with
the realization that monodromy effects [2] can generate
a suitable potential for large-field models of inflation.
These large-field models may be required if any of the
B-mode signal found in the BICEP2 results [3] is due to
primordial gravitational waves.
Inflation is efficient at accounting for the adiabatic,

nearly scale-invariant spectrum of curvature fluctuations
in the early universe with an amplitude measured to
be ∆2

R ∼ 2.2 × 10−9 [4]. In addition, there is an ob-
served abundance of matter over anti-matter, quantified
in terms of the baryon-to-photon ratio. Observations of
the microwave background constrain the baryon asym-
metry parameter to be [5]

η =
nb − nb̄

nγ
= (6.5± 0.15)× 10−10, (1)

and constraints on nucleosynthesis require η ∼ 5.7−6.7×
10−10 in order to get the observed light elemental abun-
dances correct (for a review and references see [6]). This
number is remarkably similar to the observed amplitude
of the dimensionless power spectrum of curvature fluctu-
ations, which leads one to look for a common origin.
In this work we explore the possibility that a net lep-

ton number, sufficient to explain the matter-anti-matter
asymmetry, may be generated via the production of left-
handed standard model neutrinos during inflation. This
scenario is naturally accommodated in axion-inflation
scenarios, involving a dimension-five derivative coupling
of the axion to standard-model neutrinos. In our sce-
nario, we assume neutrino masses are generated via the
see-saw mechanism, whereby the standard model neu-
trinos couple to GUT-scale right-handed Majorana neu-
trinos. During inflation, this see-saw may also be ac-
tive, since the electroweak symmetry can be broken by
quantum vacuum fluctuations during inflation [7]. These

quantum fluctuations can generate a Hubble-scale root-
mean-square (rms) value for the Higgs which leads to
the generation of masses for the standard model fields,
including neutrinos. The axion-inflaton couples deriva-
tively to the neutrino fields, which leads to the asymmet-
ric production of neutrino helicity states, while the see-
saw mechanism ensures that production of right-handed
neutrinos is highly suppressed compared to the produc-
tion of left-handed neutrinos. Following inflation, the
Higgs condensate decays, the neutrinos become massless,
and the resulting helicity asymmetry becomes equivalent
to a net lepton number. The result is the net production
of lepton number in the form of left-handed standard-
model neutrinos. The electroweak sphaleron will act on
this net lepton number L conserving B − L, where B is
baryon number, while driving B + L to zero and thus
generating a net baryon asymmetry.

The use of rolling scalars coupled to fermionic currents
in models for baryogenesis has a long history going back
to original work by Cohen and Kaplan [8, 9]. Dolgov and
Freese [10] proposed a rolling axion coupled to the B−L
current to generate a baryon asymmetry in the presence
of baryon number violating processes during reheating.
In contrast to this, our model does not require a complex
axion that carries baryon number. As we will explain, in
our model the baryon asymmetry is produced via lepto-
genesis which originates from a helicity asymmetry pro-
duced during inflation. Related ideas have appeared re-
cently such as Higgs relaxation leptogenesis [11, 12] and
axion-oscillation leptogenesis [13].

We work in natural units c = ~ = kB = 1 and denote
the reduced Planck mass by M−1

Pl =
√

(8πG). We use
the 2-component spinor conventions reviewed in [14], and
work with a Friedmann-Robertson-Walker metric with
‘mostly plus’ convention.

AXION INFLATION WITH MAJORANA

FERMIONS

In addition to the usual action for the standard model
of particle physics, we consider a model of pseudo-scalar
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inflation together with a set of Majorana fermions

S =

∫

d4x
{√−g

[M2
Pl

2
R− 1

2
(∂φ)2 − V (φ)

]

+ iν†i α̇e
µ
aσ̄

aα̇β∂µνiβ − 1

2
mij(ν

α
i νjα + ν†i α̇ν

†
j
α̇)

+
C

f
∂µφν

†
i α̇e

µ
aσ̄

aα̇βνiβ

}

. (2)

Here φ is the real pseudo-scalar (axion) inflaton with
a potential V (φ) which softly breaks the axion shift-
symmetry and drives a period of slow-roll inflation. The
Majorana fermion fields are νi, which we have rescaled by
their conformal weight a3/2 in order to write the deriva-
tive as a partial (rather than covariant) derivative, eµa

are vierbiens [15], while f is a mass scale associated with
the axion and C is a dimensionless coupling.
We have written a generic Majorana theory here,

but we have in mind the neutrino sector of the stan-
dard model augmented with heavy right-handed neutri-
nos (with Majorana mass terms) to give mass to the
standard-model neutrinos via the see-saw mechanism.
For simplicity, we will later consider only a single gen-
eration of neutrinos, and write both the right and left-
handed neutrino fields as left-handed spinors; νL,i = νi
(i ≤ 3). The physical right handed neutrinos are NRi =

ν†i (3 < i ≤ 6). The axial current is conserved for mass-
less fermions, therefore the axion coupling in Eq. (2) has
no effect in this limit, contributing only a boundary term
to the action.
In local thermal equilibrium, the rolling axion acts as

a chemical potential for helicity. While the universe is
not in thermal equilibrium during inflation, the effect of
the coupling of the axion to the neutrinos during these
epochs has a similar effect, and biases the gravitational
production of one helicity over the other [16]. For Dirac
fermions, where the masses are degenerate mi = m, con-
servation of charge associated with the additional U(1)
symmetry means that this particle production results in
a helicity asymmetry but not a matter-antimatter asym-
metry. In contrast, for Majorana fermions, with lepton-
number violating mass terms, this coupling leads to a
helicity asymmetry which is equivalent to lepton num-
ber and a matter-anti-matter asymmetry if these fields
subsequently become nearly massless.

THE STANDARD MODEL HIGGS DURING

INFLATION

The standard model Higgs, Φ, has a tree-level potential
of the form

V (Φ) = µ2Φ†Φ+ λ(Φ†Φ)2. (3)

At the electroweak scale, the parameters µ and λ yield
a stable minimum at a VEV of vEW = 246 GeV. While

these parameters are constant at tree level, they are mod-
ified by both loop and finite temperature corrections.
The experimentally preferred top quark and Higgs bo-
son masses give loop corrections that result in a negative
running of the coupling λ at sufficiently large vacuum-
expectation-value [17]. For the central values of the stan-
dard model parameters the electroweak vacuum is meta-
stable, however, for values within the 2-sigma regions, a
stable potential can be achieved.
During inflation, in the absence of new physics that

significantly changes the running of λ between the elec-
troweak and inflationary scales, this negative running
means that the Higgs field is generically light. Conse-
quently, quantum fluctuations of the Higgs that are pro-
duced during the inflationary epoch are sufficient to gen-
erate an rms value [7, 18]. It is then quite natural to as-
sume that the Higgs field generically has a large rms value
during the inflationary epoch, whose size is expected to
be of the order [7]

〈Φ〉 = 1√
2

(

h
0

)

, h ∼ 0.36
H

λ
1/4
∗

, (4)

where λ∗ is the Higgs self-coupling evaluated at the infla-
tionary energy scale. The Higgs condensate breaks elec-
troweak symmetry during inflation, and the Higgs mech-
anism gives the standard-model fields masses set by the
Hubble scale.
For simplicity, we will consider only a single left-

handed, and a single right-handed neutrino and take the
form of the neutrino mass matrix to be

mij =

(

0 mD

mD M

)

, mD =
yh√
2
, (5)

where y is the Yukawa coupling and M ∼ 1016 GeV is
the right-handed neutrino mass.
To proceed, we work in a basis of mass eigenstates, we

diagonalize the fermion sector by rotating the fermion
fields. After diagonalization, for a mass hierarchy M ≫
mD, the see-saw mechanism results in a mass matrix
with masses mi ∼ M,m2

D/M . We assume that the right-
handed neutrinos are heavy compared to all scales of in-
terest, and can be safely neglected. In what follows we
consider only the left-handed neutrinos, whose mass we
take to be a free parameter of order the Hubble scale.

LEFT-HANDED NEUTRINO PRODUCTION

DURING INFLATION

As noted above, for simplicity we focus on a single
generation of neutrinos. Varying the action with respect
to ν† yields the equation of motion for ν

(

ieµaσ̄
aα̇β∂µ +

C

f
∂µφe

µ
aσ̄

aα̇β

)

νβ = mν†α̇, (6)
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where m = m2
D/M . We expand each field into a Fourier

basis,

να =
∑

λ

∫

d3k

(2π)3
[

xλ
α(k, t)a

λ
k
eik·x + yλα(k, t)a

†λ
k
e−ik·x

]

,

(7)

where we have introduced creation and annihilation op-
erators, aλ

k
and a†λ

k
, which satisfy the anti-commutation

relations {aλ
k
, a†λ

′

k′ } = (2π)3δ3(k− k′)δλλ′ , with all other
anti-commutators vanishing, as usual. We quantize
the fields by imposing the anti-commutation relations
{να(x, t), πβ

ν (y, t)} = iδβαδ
3(x − y). The canonical mo-

menta of the fermions are found in the usual way

πβ
ν =

∂L
∂ν̇β

=iν†α̇σ̄
0α̇β , (8)

where an overdot here and throughout denotes a deriva-
tive with respect to cosmic time, t. We work in a basis
of helicity eigenspinors, which satisfy

~σ · k̂ξλ = λξλ, λ = ±1, ξ−λ(−k̂) =ιλ
k̂
ξλ(k̂), (9)

where ιλ
k̂
is a phase that satisfies ιλ∗

k̂
ιλ
k̂
= 1, and ιλ

−k̂
=

−ιλ
k̂
. Writing the spinors in this helicity basis as

xλ
α(k, t) =Xλ

k (t)ξλ(k), yλ†α̇(k, t) = Y λ∗
k (t)ξλ(k), (10)

canonical quantization requires the fermion wavefunc-
tions satisfy

∑

λ

[

Xλ
k (t)X

λ∗
k (t) + Y λ∗

k (t)Y λ
k (t)

]

= 1. (11)

Substituting Eqs. (10) and (7) into Eq. (6), the equations
of motion for the fermion wavefunctions are

i

(

∂t − i

(

k

a
λ+

C

f
φ̇

))

Xλ
k (t) =mY λ∗

k (t),

i

(

∂t + i

(

k

a
λ+

C

f
φ̇

))

Y λ∗
k (t) =mXλ

k (t). (12)

Note that the effect of the axion coupling is a helicity-
dependent shift in the effective wavenumber of the modes
k/aλ → k/aλ+ Cφ̇/f.

Assuming approximate de Sitter space during infla-
tion, H ≈ const., and taking φ̇/H ≈ const., the canoni-
cally normalized solutions Xλ

k (t), Y
λ∗
k (t) of Eq. (12) that

match onto the Bunch-Davies vacuum [16] are

Xλ
k (kτ) =

(

− im

H

)

λ+1

2 eiθe−λπ

2
ϑ

√
2kτ

W
−λ( 1

2
+iϑ),µ(2ikτ),

Y λ∗
k (kτ) =

(

− im

H

)
−λ+1

2 eiθ
′

e−λπ

2
ϑ

√
2kτ

Wλ( 1
2
−iϑ),µ(2ikτ),

where Wκ,µ(x) are the Whittaker W functions, τ =
−H−1eHt, θ and θ′ are arbitrary phases, and

ϑ = −C

f

φ̇

H
, µ =

√

m2

H2
+ ϑ2. (13)

In order to determine the particle number at any given
time, we perform a Bogoliubov transformation, and com-
pare the exact wave functions to an instantaneous WKB
solution that diagonalizes the Hamiltonian. This instan-
taneous quasi-particle number is [19, 20]

nλ
ν (k) =

[

|Ẋλ
k |2 + ω2

λ|Xλ
k | − 2ωλℑ(Xλ

k Ẋ
λ∗
k )

]

ωλ(k̃λ + ωλ)
. (14)

where the effective frequency and wavenumber are

ω2
λ(t) =k̃λ(t)

2 +m2, k̃λ(t) =

(

k

a
λ+

C

f
φ̇

)

. (15)

Using the analytic expressions for the wave functions
from Eq. (13), we derive analytic expressions for the
quasi-particle number during inflation. Assuming that
m 6= 0 and taking the limit k/aH → 0, we find

n±
ν (k) =e

−π

(

∓ϑ+
√

m2

H2 +ϑ2

) sinh

[

π

(

√

m2

H2 + ϑ2 ± ϑ

)]

sinh

[

2π

(

√

m2

H2 + ϑ2

)] .

(16)

While Eq. (16) is derived in the limit k/aH → 0, for
m ≪ ϑH it is a good approximation for the particle
number for modes that satisfy k/aH < ϑ. Note that in
the absence of the coupling to the axion (ϑ = 0), produc-
tion of both helicity states is symmetric, as expected, and
highly suppressed for fermions with masses larger than
the Hubble rate. For small masses, the occupation num-
ber approaches its maximum value of 1/2 as m/H → 0.
However, for m = 0, the theory is conformally equivalent
to a Minkowski-space theory, and no particle production
occurs [21]. When the coupling to the axion is switched
on, the particle production is asymmetric between the
helicity states. For ϑ > 0 (ϑ < 0), particle production of
the λ = + (λ = −) helicity state is enhanced while parti-
cle production of the λ = − (λ = +) mode is suppressed.
Larger couplings allow the production of fermions with
increasingly large mass.
This particle production can be understood by study-

ing the evolution of Eq. (12) in the WKB approximation.
Form/H ≪ ϑ, particle production occurs near the points
of non-adiabatic evolution of k̃. As discussed in [16],
these occurs whenever k̃ = 0, where kλ/a = −(C/f)φ̇.
After this event, k/aH < ϑ, and the resulting (quasi-
)particle number is approximately constant. The max-
imum comoving wavenumber of excited fermion states
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can be calculated as the maximum comoving wavenum-
ber that makes k̃ = 0. By simple inspection of the terms
in k̃, we can see the scaling kmax ∝ (C/f)φ̇. The pro-
portionality factor depends on the axion potential, as
explained in [16].
At the end of inflation the resulting helicity asymmetry

is (assuming ϑ > 0)

nh
ν =

∑

λ=±1

3λ

2π2a3

∫ ∞

0

nλ
ν (k)k

2dk ≈ 〈n+
ν 〉

2π2a3

(

Cφ0

f
aeHe

)3

,

(17)

where we have used kmax ∝ (Cφ0/f)aeHe, and ae and He

are the scale factor and Hubble rate, respectively, at the
end of inflation. The quantity 〈nλ

ν 〉 is the phase-space-
averaged occupation-number [16] of the helicity λ. We
have taken φ̇/H = φ0, where φ0 ∼ Mpl is the field value
at which inflation ends and oscillations begin. We have
also summed over the three generations of neutrinos.
After inflation, once the Hubble rate drops below the

mass of the Higgs, the Higgs condensate will decay restor-
ing electroweak symmetry [7] and this helicity asymmetry
will become equal to lepton number.
Following inflation the axion oscillates which results in

the production of both helicity states of the left-handed
neutrinos. However, the helicity states that are produced
during inflation (and during the first axion zero-crossing)
are produced out to a larger wavenumber due to the fact
that the other helicity is not produced until the axion ve-
locity changes sign. Provided that the Higgs condensate
does not decay immediately following inflation, the subse-
quent production events are less efficient due to Hubble
damping of the axion velocity. The end result is that,
even after the axion oscillations are taken into account,
a helicity asymmetry of the order of Eqn. (17) is generic
for a wide range of parameter space. A detailed analy-
sis of fermion production during and after axion inflation
appears in [16].

BARYON-TO-PHOTON RATIO

During reheating, the energy density ρ = 3M2
PlH

2
e in

the inflaton is converted into radiation, over an epoch
where the scale factor expands from ae at the end of in-
flation to aR at the end of reheating. Taking an arbitrary
equation of state (w) of the universe between the end of
inflation and reheating, we write the comoving entropy
at reheating as

a3Rs =
2π2

45
g∗a

3
RT

3
R =

4M2
PlH

2
ea

3
e

TR

(

ae
aR

)3w

, (18)

where TR ∼
√
ΓIMPl is the reheat temperature, ΓI the

inflaton decay rate, and g∗ is the effective number of rela-
tivistic degrees of freedom. In obtaining this expression,

we used the Friedmann equation to relate the energy den-
sity at the end of inflation to the energy density at re-
heating

3M2
PlH

2
R = ρe

(

ae
aR

)3(1+w)

=
π2

30
g∗T

4
R, (19)

where HR is the Hubble rate at reheating, and ρe =
3M2

PlH
2
e is the energy density at the end of inflation. Us-

ing Eq. (18), we arrive at an estimate for the asymmetry
parameter at reheating

ηR ≈ 〈nν〉
8π2

(

Cφ0

f

)3
He

MPl

TR

MPl

(

aR
ae

)3w

. (20)

Following reheating, standard-model sphaleron processes
redistribute this asymmetry between lepton and baryon
numbers [22]. Standard-model entropy generation and
the redistribution of the lepton number into baryon num-
ber lowers ηR by one or two orders of magnitude, which
implies we require ηR ∼ 10−7 − 10−8 in order to explain
the present day baryon asymmetry.
In order to obtain the correct asymmetry, assuming

that the average occupation number 〈n+
ν 〉 is of order

unity, and that the universe is matter dominated during
reheating w = 0, we see that we require both high scale
inflation and a relatively high reheating temperature in
order to overcome the M−2

Pl suppression. However, the
tensor-to-scalar ratio constrains the inflationary energy
scale to be H . 10−5− 10−6 MPl. On the other hand, in
order to prevent the washout of the lepton number stored
in the left-handed neutrinos, we need to ensure that re-
heating occurs below the scale at which lepton number
violating processes involving the exchange of heavy right-
handed neutrinos are in equilibrium. In order to prevent
excessive washout, the reheat temperature must be below
TR . 3× 1014 GeV [11].
Taking TR ∼ 1013 GeV, GUT scale inflation He ∼

10−6 MPl, we see that for f ∼ 10−2 − 10−3 MPl we re-
quire order unity couplings C ∼ 1 between the axion and
standard-model neutrinos to generate a baryon asymme-
try of the appropriate size today.

DISCUSSION AND CONCLUSIONS

In this work we have studied the generation of lepton
number via the biased production of left-handed neu-
trino helicity states during inflation. In our scenario,
we assume that quantum effects break electroweak sym-
metry during inflation and the standard-model neutri-
nos are given masses by GUT scale right-handed Majo-
rana neutrinos. Following inflation, electroweak symme-
try is restored as the Higgs condensate decays and the
left-handed neutrino helicity becomes equivalent to a net
lepton number. Sphaleron processes redistribute this net
lepton number, L, into baryon number B, via processes
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that violate B +L but conserve B −L resulting in a net
baryon number.
The number-density of neutrinos produced by this

mechanism is proportional to the cube of the Hubble rate
at the end of inflation. This is simply due to the nature of
inflationary particle production, which populates states
with momenta near the Hubble scale. High-scale inflation
at or near the GUT scale produces the smallest allowable
Hubble length, and therefore the largest number-density
of neutrinos. In order that these neutrinos are not diluted
too much by the subsequent expansion between the end
of inflation and the onset of the hot big-bang phase, the
reheat temperature needs to be high. However, this re-
heating temperature cannot be significantly higher than
∼ 1014 GeV, as scattering processes mediated by heavy
right-handed neutrinos can wash out the asymmetry.
To produce the observed baryon asymmetry with this

mechanism, we require the Hubble rate at the end of
inflation He ∼ 10−6MPl, a reheat temperature TR ∼
1013 GeV and a derivative coupling between an axionic
inflaton and a Majorana neutrino sector with strength
C/f ∼ 102 − 103M−1

Pl .
A number of details of this scenario still need to be

explored. First, since the fermions are produced during
inflation, their backreaction could lead to significant con-
tributions to the curvature spectrum. Secondly, we have
made only rough estimates of how much of the helicity
asymmetry eventually becomes a final baryon asymme-
try. This process is dependent on the details of reheating,
and requires modeling the decay of the Higgs condensate
and solving Boltzmann equations. Finally, the possibil-
ity of fermion isocurvature perturbations [23] could lead
to an independent observable that is correlated to the
baryon asymmetry. We leave these studies for future
work.
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