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A minimax estimator has the minimum possible error (“risk”) in the worst case. We construct the
first minimax estimators for quantum state tomography with relative entropy risk. The minimax
risk of non-adaptive tomography scales as O(1/

√
N), in contrast to that of classical probability

estimation which is O(1/N), where N is the number of copies of the quantum state used. We
trace this deficiency to sampling mismatch: future observations that determine risk may come
from a different sample space than the past data that determine the estimate. This makes minimax
estimators very biased, and we propose a computationally tractable alternative with similar behavior
in the worst case, but superior accuracy on most states.

Quantum information processing relies on physical sys-
tems that store and process quantum information, usu-
ally in the form of qubits. Testing and characterizing
qubit devices is the business of quantum tomography [1],
and quantum state tomography in particular is used to es-
timate the quantum state (density matrix) ρ produced by
an initialization procedure. Tomography comprises two
steps: (1) data gathering, accomplished by measuring a
“quorum” of different observables on N samples of ρ; and
(2) an estimator that maps the data to a final estimate
ρ̂. The goal, of course, is an accurate estimate—we want
a ρ̂ “close” to the true state ρ, minimizing some error
metric d(ρ : ρ̂).

We define an optimal estimator to be one which
acheives the highest accuracy in the worst case. One
might expect tomographers to choose an estimator that
is optimal (or at least near-optimal). Surprisingly, this
is not done. Although several estimators are known
and used (linear inversion [2], maximum likelihood [3],
Bayesian mean [4], hedged maximum likelihood [5], L1-
regularization [6], BLUE [27]), none of them is known to
have optimal pointwise accuracy [29] for finite N . Until
now, it wasn’t even possible to evaluate whether any of
these estimators is “good enough”, because the bounds
on achievable pointwise accuracy weren’t known either.

We address this situation in the present Letter by con-
structing minimax estimators (depicted in Fig. 1; see
detailed explanation after Eq. 7) with absolutely opti-
mal performance. These estimators are unwieldy, but
(i) their performance yields tight upper bounds on accu-
racy, effectively delineating what “good enough” means,
and (ii) their construction provides quite a lot of insight
into the structure of the problem. Armed with these re-
sults, we show that hedged maximum likelihood (HML)
is remarkably close to optimal, and outperforms mini-
max for most states (though of course its worst-case risk
is higher). We also identify the value for the hedging
parameter β that appears in HML which leads to the
minimax solution within that class.

Prerequisites: Defining “accuracy” requires making
several choices. For example, an optimal estimator for
one error metric d(ρ : ρ̂) is generally not optimal for a
different metric d′(ρ : ρ̂). Here [7], we quantify inaccu-
racy by the quantum relative entropy,

d(ρ : ρ̂) = Tr [ρ(log ρ− log ρ̂)] . (1)

Relative entropy [26] is a well-motivated measure of pre-
dictive (and information-theoretic) inaccuracy [4]. It is
a uniquely well-motivated error metric [32]; critically, it
is Fisher-adjusted (i.e., agrees locally with the unique
metric of statistical distinguishability [31]). Non-Fisher-
adjusted metrics are ill-motivated and yield arbitrary re-
sults. Analysis of a different Fisher-adjusted metric (e.g.
infidelity) would produce results qualitatively similar to
those we derive here.

An estimator’s pointwise risk is a function of the true
state ρ and is given by the average of d(ρ : ρ̂) over all
possible data sets D of finite size N :

d(ρ) =
∑
D

Pr(D|ρ)d(ρ : ρ̂(D)). (2)

In the minimax paradigm, we quantify an estimator’s
accuracy by its worst-case risk, dmax = maxρ d(ρ). The
minimax risk of the estimation problem is the minimum
achievable risk (minimized over all possible estimators),
and a minimax estimator is one that achieves this bound.

In most inference problems, the sample space of pos-
sible observations (data) is fixed by the problem. Not so
in quantum tomography. Quantum systems can be mea-
sured in many different and incomparable ways. This is
the single most significant difference between quantum
and classical estimation. This freedom is often removed
in quantum problems by choosing the best or worst possi-
ble measurement (e.g., as in the definition of quantum rel-
ative entropy as the classical relative entropy of the most
difficult-to-predict measurement). This is usually not
done in tomography, because the measurements which
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FIG. 1: Estimators for Pauli measurements on a rebit,
depicted as distortions of the “linear inversion grid” (see text
after Eq. 7). (a) Three standard estimators for M = 8 mea-
surements of X and Y . Vertices of the red grid correspond
to estimated states. Linear inversion estimates extend out-
side the “Bloch disk” of physical states. MLE’s estimates are
non-negative; HML’s are strictly positive. (b) Minimax esti-
mators for M = 8, 16, 32, 64 measurements of X and Y on a
rebit. “Ripples” indicate local bias toward support points of
the least favorable prior [32].

have the lowest expected risk are far too difficult. In this
letter, we follow the majority of experiments and analyze
tomography based on Pauli measurements on a single
qubit. However, we also prove analytic lower bounds on
minimax risk that apply to any non-adaptive measure-
ment and any d-dimensional quantum system. In some
parts of our analysis, we use a rebit – a quantum sys-
tem with a 2-dimensional real Hilbert space, whose state
space corresponds to the equatorial plane of the Bloch
sphere – as an easier-to-analyze proxy for a qubit.

Minimax risk: The first main result of this Letter
is a lower bound on the asymptotic (N → ∞) minimax
relative entropy risk of Pauli tomography on qubits and
rebits,

dmax ≥
e−

1
2

4

√
D− 1√
N

, (3)
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FIG. 2: Numerical minimax risk for qubits, rebits,
and noisy coins. Black curves show the risk of numerically
constructed minimax estimators for (a) a qubit and (b) a
rebit, as a function of the number of samples (N), up to the
maximum that was numerically feasible. Red curves illustrate
the numerically-computed risk of “noisy coin” systems whose
noise levels are chosen to match the effective “noise” of the
qubit and the rebit (respectively). Blue lines show the the
lower bound given in Eq. (6).

where D = 2 for rebits and D = 3 for qubits. Its
O(1/

√
N) scaling contrasts sharply with the minimax

risk of estimating a classical bit, which is almost exactly
0.5/N [10, 11]. We derive this bound below by mapping
the minimax risk of qubit and rebit state tomography to
a classical “noisy coin” model. In Figure 2, we compare
these bounds to numerical calculations of the minimax
risk, for small N , of qubits, rebits, and noisy coins.

A d-dimensional quantum state is analogous in many
ways to a classical d-outcome probability distribution.
However, its minimax risk scales differently because of a
phenomenon instrinsic to quantum tomography (though
not uniquely quantum) that we call sampling mismatch:
the sample space for the observed events is neither unique



3

nor isomorphic to the underlying state space. For ex-
ample, the possible statistics for the three 2-outcome
Pauli measurements on a qubit naturally define a cube,
whereas the possible quantum states form a sphere (the
Bloch ball).

Sampling mismatch can be reproduced in a simple clas-
sical model called the “noisy coin” [12]. It is a classical
system with a 2-outcome sample space (i.e., a coin flip)
where each observation is erroneous with known proba-
bility α. Sampling mismatch arises when we attempt to
assign probabilities to future noiseless observations using
data from noisy measurements. The noisy coin’s min-
imax risk is O(1/

√
N), because nearly-pure states are

hard to estimate accurately from noisy statistics. The
corresponding minimax estimators are strongly biased
toward nearly-pure states (see [12] for details). We are
going to use a variant of the noisy coin model to bound
the risk of tomography.

We define “tomography” thus: N samples (copies) of
a single-qubit state ρ will be prepared; each sample will
be measured independently (not jointly together with
other samples) in a predefined fashion (not adaptively).
The kth sample is measured in an arbitrary basis, and
this measurement can be described by a POVM (posi-
tive operator-valued measure)Mk = {Πk, 1l−Πk} whose
outcomes have probabilities {q, 1 − q} with q = TrΠkρ.
Based on the N measurement results, we report a state
ρ̂, and seek to minimize relative entropy cost.

Now, suppose that before analyzing the data (but af-
ter choosing the measurements!) we are told the eigen-
basis of ρ. This helps us (only ρ’s spectrum must be
estimated), so the risk of spectrum estimation is a strict
lower bound on the risk of full tomography[30].

We define {|0〉 , |1〉} to be the eigenstates of ρ, and
write

ρ = p |0〉〈0|+ (1− p) |1〉〈1| . (4)

Now, we need only estimate p ∈ [0, 1]. This parame-
ter manifold is identical to that of a coin. Furthermore,
the quantum relative entropy between two diagonal den-
sity matrices is identical to the classical relative entropy
between the corresponding distributions. So, since ρ’s
eigenbasis is known, estimating ρ is identical to estimat-
ing the bias of a coin. However, unless the eigenbases of
ρ and the Πk happen to coincide, the measurement data
obtained from the N samples of ρ are not “noiseless”.
Even if p = 0 (i.e., ρ is pure), the data remain somewhat
random. The probability of observing Πk is not p, but

q = p 〈0|Πk |0〉+ (1− p) 〈1|Πk |1〉
= p(1− 2αk) + αk

where the effective noise in sample k is

αk = 〈1|Πk |1〉2 . (5)

We can model this situation perfectly by a noisy coin (as
in Ref. [12]) where each observation fails with a different
error probability. The error probability for the kth sam-
ple is αk. In [32], we bound this estimation problem’s
minimax risk by

dmax ≥
e−

1
2

2
√
β̄

1√
N
, (6)

where β̄ is the average resolution provided by the N noisy
samples:

β̄ =
1

N

N∑
k=1

βk =
1

N

N∑
k=1

(1− 2αk)2

αk(1− αk)
. (7)

For any fixed measurement strategy – e.g., the stan-
dard one where N/3 samples are measured in the X,Y, Z
bases – the maximum risk occurs when we choose the
eigenbasis of ρ to maximize β̄ in Eq. 7. This “least fa-
vorable” basis is the one that lies as far as possible from
all measured bases. For a rebit, it lies halfway between
the X and Z bases, and αk = 1

2 (1− 1/
√

2). For a qubit,
it is the geometric mean of the X, Y , and Z bases, and
αk = 1

2 (1 − 1/
√

3). Inserting these values for αk yields
the final bound given in Eq. 3.

This argument applies (qualitatively) to tomogra-
phy on any finite-dimensional system with any discrete
POVM. As long as no samples are measured in a basis
that diagonalizes ρ, the minimax risk scales as O(1/

√
N)

(although the prefactor will vary). However, if any non-
vanishing fraction of the N samples are measured in a
basis that diagonalizes ρ, then Eq. 6 no longer applies.
Thus, continuous POVMs such as the unitarily invari-
ant Haar-uniform rank-1 POVM (a.k.a. the uniform
POVM), require a slightly different argument. In [32],
we prove that even in this case, the minimax risk is lower
bounded by O

(
(N logN)−1/2

)
.

Estimators: To confirm the bound given by Eq. 3
and explore minimax risk at small N , we use numerics
to find minimax estimators. An estimator is a map from
the set of all possible datasets into the set of density
matrices. The possible outcomes of the measurement(s)
performed are represented by a set of positive operators
{Ek}, and the data themselves by a set of raw counts D =
{nk}. For qubit Pauli tomography, the data comprise
M = N/3 samples each of σx, σy, and σz measurements;
for rebits, they comprise M = N/2 samples each of σx
and σy measurements [13].

We used numerical optimization (over the set of pos-
sible estimators) to find minimax estimators. The algo-
rithms are described in [32]. In Figure 1, we depict the
resulting estimators, and compare them to three canoni-
cal estimators:

1. Linear inversion (ρ̂LI): The first tomographic es-
timator, it is obtained by equating each probability
Pr(k|ρ̂LI) = TrEkρ̂LI to its observed frequency nk

M .
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2. Maximum likelihood (ρ̂ML): MLE assigns the
density matrix that maximizes the probability
of the observed data (the likelihood), L(ρ) =
Pr(D|ρ) =

∏
k [Tr(Ekρ)nk ].

3. Hedged maximum likelihood (ρ̂HML,β): The
HML estimator maximizes the product of L(ρ) and
a “hedging function” h(ρ) = det(ρ)β . This function
is strictly convex and vanishes for rank-deficient
states, so the HML estimate is always full-rank.

To simplify visualization, we depict rebit estimators,
which are qualitatively similar to qubit estimators and
easier to depict. A rebit estimator is a map from datasets
to Bloch vectors, as ρ̂ : {0, . . . ,M}2 → R2. We use the
linear inversion estimator as a reference. As a linear map
from the 2-dimensional space of datasets ({0 . . .M}2)
and the 2-dimensional space of rebit states (the unit disc
in R2), the linear inversion estimator is represented by
a uniform grid on the “Bloch square” (Fig. 1a). Every
other estimator is represented as a distortion of this grid.
The vertices of the grid are estimates ρ̂, and the position
of such a vertex within the grid indicates what dataset it
came from.

Minimax estimators for N = 16, 32, 64 and 128 (to-
tal) Pauli measurements on a rebit are shown in Figure
1b. The most striking feature of these estimators is a
pronounced “ripple” phenomenon. This is not a numer-
ical artifact. Instead, it represents a consistent bias to-
ward certain discrete points within the state space (sup-
port points of the least favorable prior – see Fig. 1 in
[32]), which can be identified in Figure 1 as regions where
the grid lines cluster together. The minimax estimator
demonstrates this bias because these points are, in a par-
ticular sense, the most difficult to estimate accurately.

Improving on Minimax: The minimax criterion is
an elegant concept, but a dangerous one. In its single-
minded quest to improve the maximum risk, it has no
concern for the pointwise risk at states that are “eas-
ier” to estimate. In such regions, it may incur extreme
bias and inaccuracy, for the sole purpose of achieving a
tiny reduction in the maximum risk. For quantum to-
mography, this effect become extreme. While O(1/N)
risk can be achieved on all full-rank states, the risk is
unavoidably O(1/

√
N) near the boundary. Our numer-

ical experiments confirm that the minimax estimator’s
pointwise risk is O(1/

√
N) everywhere, whereas other es-

timators easily achieve O(1/N) risk in the interior of the
Bloch sphere (Fig. 3b). If ρ really was selected adversar-
ially, then minimax would be a wise strategy. But in re-
alistic cases, we would prefer an estimator that achieved
O(1/N) scaling where possible, even at the cost of slightly
worse worst-case behavior.

A good estimator should achieve O(1/N) risk in the
interior, while coming as close as possible to minimax
performance near the boundary. The maximum likeli-
hood estimator (MLE) is disqualified because its point-
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FIG. 3: Maximum and pointwise risk of minimax and
HML estimators. Plot (a) shows the maximum risk, for
qubit tomography, of the minimax estimator and three dif-
ferent HML estimators (β = 0.01, 0.04, 0.10) for N ≤ 192
samples distributed equally among the 3 Pauli bases. Plot
(b) shows the pointwise risk, along the axis oriented at 45
degrees to both X and Y , of the same estimators for N = 128
samples for a rebit (this minimax estimator is depicted in
Fig. 1b). The two local maxima of d(ρ) are at r = 1 and
r ≈ 1 − 1√

N
. Choosing β ≈ 0.04 balances these risks, and

is therefore minimax among HML estimators. This HML es-
timator comes very close to matching the worst-case perfor-
mance of the minimax estimator, and outperforms it dramat-
ically in the interior of the state space.

wise expected risk is uniformly infinite (it has nonzero
probability of returning a rank-deficient estimate for ev-
ery ρ, so d(ρ) = ∞). However, hedged maximum likeli-
hood (HML) does not have this behavior. Introduced in
Ref. [5] as a full-rank alternative to MLE, HML general-
izes classical “add-β” estimators. Like them, it never as-
signs zero probabilities, and has a adjustable parameter β
that governs how much it avoids zero eigenvalues. Clas-
sical “add-β” estimators are very nearly minimax (for
β ≈ 1/2), which suggests that HML estimators might
have similar near-optimality properties.

All HML estimators have good behavior (O(1/N)
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pointwise risk) in the interior, so we choose β to be the
one which is minimax among HML estimators. As illus-
trated in Fig. 3b, an HML estimator’s pointwise risk has
local maxima at the boundary (pure states) and/or at
a slightly depolarized state (with purity ∼ 1 − 1/

√
N).

To minimize its maximum, we choose β to equalize the
risk at these two local maxima. The asymptotically min-
imax β for the noisy coin model was shown in Ref. [12]
to be βoptimal ≈ 0.0389, and our numerics confirm that
β ≈ 0.04 is minimax to within the available numerical
precision for rebit tomography as well (Fig. 3b; qubit
results for smaller N are not shown, but confirm that
β ≈ 0.04 has nearly-minimax performance).

For this value of β, HML compares favorably with min-
imax estimators. Its worst-case risk is very close to the
minimax risk (Fig. 3a), and it dramatically outperforms
minimax in the interior of the state space (Fig. 3b).
So while hedging estimators do not offer strictly opti-
mal performance by the global minimax criterion, they
are (i) easy to specify and calculate, (ii) close to min-
imax, and (ii) more accurate than minimax estimators
for almost all states ρ. We do not know why the mini-
max β is so different for noiseless coins (≈ 0.5) and for
qubits/rebits/noisy coins (≈ 0.04), but it suggests funda-
mental differences between noiselessly sampled systems
and those (like qubits and noisy coins) where sampling
mismatch is important.
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