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A system subjected to noise contains a decoherence-free subspace/subsystem (DFS) only if the
noise possesses an exact symmetry. Here we consider noise models in which a perturbation breaks a
symmetry of the noise, so that if S is a DFS under a given noise process it is no longer so under the
new perturbed noise process. We ask whether there is a subspace/subsystem that is more robust
to the perturbed noise than S. To answer this question we develop a numerical method that allows
us to search for subspaces/subsystems that are maximally robust to arbitrary noise processes. We
apply this method to a number of examples, and find that a subsystem that is a DFS is often
not the subsystem that experiences minimal noise when the symmetry of the noise is broken by a
perturbation. We discuss which classes of noise have this property.

PACS numbers: 03.65.Yz, 03.67.Pp

Introduction.—Techniques to reduce and correct er-
rors are crucial for realizing scalable and fault-tolerant
quantum information processing [1]. The key technique
that enables noise reduction is the encoding of informa-
tion in a way that includes redundancy. In quantum
error-correction codes (QECC) [2–8] the encoded infor-
mation is still affected by the noise, but errors can be
detected and corrected by exploiting the redundancy. If
the noise contains an appropriate symmetry then redun-
dancy can be used to eliminate the noise entirely by en-
coding in a so-called decoherence free subspace or sub-
system (DFS) [9–19]. Necessary and sufficient conditions
for the existence of a DFS have been derived [10, 20], as
have numerical methods for finding DFS structures [21–
23]. Moreover QECC and DFS’s can be combined to im-
plement fault-tolerant quantum computation [20]. Com-
pared with QECC the implementation of a DFS is sim-
pler and can save computational resources, but is limited
to noise that contains one or more symmetries, and this
is often absent in real devices. In many cases a real noise
process can be considered as a slight deviation from noise
with a symmetry, and the corresponding DFS encoding
is still useful for noise reduction. Here we address two
open questions regarding such realistic noise. The first is,
given an arbitrary noise process, how can one find a sub-
space/subsystem that is least affected by this noise? We
will refer to such a subspace or subsystem as a minimal-
noise subspace/subsystem (MNS). Secondly, if a subspace
or subsystem H0 is a DFS for a given noise source s(t), is
H0 also the MNS for noise which deviates slightly from
s(t)? We address these questions by developing a numer-
ical method to search for minimal noise subspaces and
subsystems.

Existence of a DFS.—All quantum systems S are sub-
ject to noise from their environments, and as a result their

evolution is not unitary. Under the Born-Markov approx-
imation, the reduced dynamics, excluding the evolution
due to the Hamiltonian of the system, H, is given by
ρ̇ =

∑
iD[Vi]ρ, where D[V ]ρ = V ρV †− 1

2 (ρV †V +V †V ρ).
The operators Vi are called Lindblad operators and they
characterize the noise source(s). The above dynamics is
unitary if and only if

∑
iD[Vi]ρ = 0, which is equivalent

to [Vi, ρ] = 0 for each Vi [20]. Thus a DFS is a subspace
or a subsystem H0 such that [Vi, ρ] = 0 for any ρ ∈ H0.
Another way of describing noise the operator-sum repre-
sentation:

Eρ ≡
p∑
k=1

EkρE
†
k, (1)

where the quantum channel E : ρ → Eρ, is characterized
by a set of noise operators {Ek} satisfying

∑
k E
†
kEk = I.

A space H0 is a DFS if and only if [Ek, ρ] = 0 for each k
and for any ρ in H0 [20]. By working in the interaction
picture we can set H = 0, and this allows us to focus on
the effect of the noise.

The relationship between the operators {Ek} and the
existence of a DFS is neatly characterized by the Wed-
derburn decomposition for block-diagonalization [24–26]:

N =
⊕̀
i

Ni ≡
⊕̀
i

Ini ⊗Mmi , (2a)

N ′ =
⊕̀
i

N ′i ≡
⊕̀
i

Mni
⊗ Imi

. (2b)

Here, N is the C∗-algebra generated by {Ek}, and N ′
is its commutant algebra [27]. The indices ni and mi

represent dimensions: Mni denotes the C∗-algebra of
ni × ni matrices and Imi is the identity operator with
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dimension mi [28, 29]. Hence, any subsystemMni
⊗ Imi

with ni > 1 corresponds to a DFS that can encode an ni-
dimensional quantum state ρni into ρ(en) = ρni ⊗ 1

mi
Imi .

Note that Eq.(2) is valid for any N -dimensional system
S, including a collection of qubits or qudits.

Minimal noise subsystems.—Let us encode a state ρ1 =
|ψ〉〈ψ| of an N1 dimensional system in another system S
with dimension N ≥ N1. We can always write the state
that encodes ρ1 in the form ρ = ρ1 ⊗ 1

N2
IN2
⊕ 0N3

. Here
IN2 is the identity operator with dimension N2, 0N3 is the
zero operator with dimension N3, and N = N1N2 +N3.
Here the Hilbert space H of S has been decomposed as
H = H1 ⊗H2 ⊕H3 so that H1 contains the state |ψ〉. If
N2 = 0 then ρ1 is encoded purely in a subspace of S, and
if N3 = 0 then it is encoded purely in a subsystem of S.

We now note that every encoding of |ψ〉 with fixed val-
ues of N2 and N3 can be obtained by applying a unitary
operator U to the state ρ as defined above. We thus wish
to find the operator U for which the encoded state |ψ〉
experiences the least disturbance under the noise process
in Eq.(1). The resulting U will give us an MNS encoding,
and we will call U the encoding matrix.

To use a numerical search method to find the U that
gives an MNS we need to obtain an explicit expression
for the disturbance to the encoded state |ψ〉 as a function
of U , and in doing so we will need to precisely quantify
this disturbance. To obtain the desired expression we
first note that under the transformation U , Eρ becomes

UEρU† =

p∑
k=1

(UEkU
†)(UρU†)(UEkU

†)† = Ē ρ̄, (3)

where we have defined ρ̄ = UρU†. The reduced evolution
of |ψ〉 induced by E is

E1ρ1 = Ē ρ̄|H1
≡ Tr2

(
P Ē ρ̄P

)
(4)

where P is the projection operator on H1 ⊗H2, and Tr2
denotes the partial trace over H2. Now the action of
E1 on ρ1 can alternatively be written in the standard
operator-sum representation as

E1ρ1 =
∑̀
j=1

Ajρ1A
†
j = p1ρ1 +

∑̀
j=2

Ajρ1A
†
j (5)

where A1 =
√
p1 IN1

and 0 < p1 ≤ 1. Notice that p1 is
the probability that the state |ψ〉 remains undisturbed,
and thus characterizes the ability of the coding scheme
to protect |ψ〉 from the noise. If p1 = 1 then H1 ⊗ H2

corresponds to a perfect DFS encoding. We therefore
define the MNS as that given by the choice of N2, N3,
and U that gives the largest value of p1. To obtain an
explicit expression for p1 in term of Ek and U we proceed

Step 1: (a) choose N1 and N2 for the encoding subsystem;
(b) parametrize U [α] = U(α1, . . . , αN2);
(c) express J in terms of α;

Step 2: (d) choose a random α(0) as the initial point;

(e) at the k-th iteration, BFGS method gives J (k);

(f) {J (k)} converges to an optimal value Jopt;
Step 3: (g) repeat Step 1 and Step 2 for other N1 and N2.

TABLE I. Algorithm to search for an MNS.

as follows. First, Eq.(4) gives

E1ρ1 = Tr2

[ p∑
k=1

(PUEkU
†P )ρ(PUE†kU

†P )

]

=
1

N2

p∑
k=1

∑
mm′n

a(k)mna
∗(k)
m′nσ

(1)
m ρ1σ

(1)
m′ (6)

where each PUEkU
†P is decomposed into a

(k)
mnσ

(1)
m σ

(2)
n .

The set of operators {σ(j)
m } is a generalized orthonormal

Pauli basis for Hermitian operators on Hj , j = 1, 2, and

σ
(j)
0 = INj

/
√
Nj . Equating Eqs.(5) and (6) results in the

expression we seek:

p1 =
1

N1N2

p∑
k=1

N2
2∑

n=1

|a(k)0n |2, (7)

where a
(k)
0n = Tr[PUEkU

†Pσ
(1)
0 σ

(2)
n ]. We will denote the

function in Eq.(7) that maps U to p1 by p1 = L(U).
Numerical method.— The analysis above provides the

following numerical method for finding one or more
MNS’s. For a given problem, defined by N and the noise
operators {Ek}, we first enumerate all the pairs (N1, N2)
for which N1N2 ≤ N , and then for each of these pairs
we use a gradient search method to search for unitaries
U that maximize the function p1 = L(U). The triple(s)
(N1, N2, U) for which p1 is maximal give the MNS(’s).

A gradient search method performs a search over a
space defined by a set of real parameters, and so in our
case this will be the space of N2 real parameters that
define an N -dimensional unitary matrix U . For this pur-
pose we use the parametrization devised in [30] in which
U is written in terms of 1

2N(N + 1) phase variables {φn}
and 1

2N(N − 1) angle variables {θk}. We can thus write
p1 = J (v) = L(U(v)) where the N2 elements of the vec-
tor v are the parameters. The search runs over all values
of the parameters and is thus “unconstrained”. Two pop-
ular gradient search methods are the conjugate gradient
(CG) and the quasi-Newton Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithms [31]. The CG method re-
quires fewer evaluations of the function J (v) per itera-
tion while BFGS usually requires fewer iterations to con-
verge to a solution. When the objective function is rela-
tively inexpensive to calculate, which is true in our case,
the BFGS method is usually faster and so we use it here.
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The gradient search must start at some point in the
parameter space, and this point is usually chosen at ran-
dom. The values of p1 obtained by the search are only
guaranteed to be locally maximal. To account for this the
search can be performed multiple times, each time start-
ing at a different random location. In this way one col-
lects a set of locally maximal values of p1. When enough
searches have been performed that new searches provide
no new local maxima, we obtain some confidence that
all the local maxima have been enumerated. In this case
the global maxima are simply those local maxima that
all achieve the highest value of p1. The entire algorithm
for locating MNS’s is summarized in Table I.

Performance of an MNS.—While we have defined the
MNS as the encoding that preserves the encoded state
with the highest probability, we can also ask to what
extent a state is disturbed by the noise when it is encoded
in the MNS. Such an average disturbance can be thought
of as the performance of the MNS. There are many ways
to quantify disturbance and we choose here to employ the
fidelity between the state that is initially encoded, |ψ〉,
and the encoded state after the noise has acted, which
we will denote by σ [32–36]. Because the initial encoded
state is pure, the fidelity reduces to the simple form F =
〈ψ|σ|ψ〉 = Tr[ρ1σ] with ρ1 = |ψ〉〈ψ|. We characterize the
performance of the MNS as this fidelity F minimized over
all pure states that could be encoded. Given an arbitrary
density matrix w for system S, let us define the operation
Oen by Oenw = UwU† and its inverse by Odew = U†wU .
Note that Oen is used to encode the state |ψ〉 and Ode

is used to decode it. With these definitions we can write
the performance of an MNS as the minimum fidelity :

Fmin = min
|ψ〉

Tr
[
ρOdeEOenρ

]
, (8)

where ρ = |ψ〉〈ψ| ⊗ 1
N2

IN2
⊕ 0N3

. The larger Fmin the
better the performance of the MNS. If Fmin = 1 the MNS
is a DFS, giving perfect protection from the noise.

Applying the procedure to Lindblad evolution—As men-
tioned in the introduction, noisy Markovian quantum dy-
namics is often expressed in terms of the Lindblad mas-
ter equation. Since our numerical algorithm is based
on the operator-sum representation (Eq.(1)), must trans-
late from the Lindbald operators to this representation.
Within an infinitesimal time-step dt, the Lindblad dy-
namics ρ̇ =

∑
iD[Vi]ρ is equivalent to

E(ρ(0)) = ρ(dt) =
∑
k

Ekρ(0)E†k (9)

where E0 = I − 1
2

∑
i V
†
i Vidt, Ek =

√
dtVk, k ≥ 1. This

allows us to apply the numerical algorithm to any Lind-
blad master equation.

Finding a DFS.—As a test of our algorithm we apply it
to a noise model under which the system contains a DFS,
since in this case the MNS will coincide with this DFS.

Notice that our algorithm requires no prior information
of the Wedderburn decomposition, Eq.(2), so it is distinct
from the previous methods given in [21, 23]. We choose
as our example an nq-qubit system Scn governed by the
following dynamics:

ρ̇ = γxD[Sx]ρ+ γzD[Sz]ρ (10)

with Sx =
∑nq

k=1Xk, Sz =
∑nq

k=1 Zk and decoherence
rates γx,z. As shown above, we can rewrite the Lind-
blad evolution of ρ(dt) in the operator-sum representa-
tion in which the operators are E0 = I − E2

1/2 − E2
2/2,

E1 =
√
dtSx , and E2 =

√
dtSz. This system has a DFS,

and the DFS structure is illustrated by the Wedderburn
decomposition [20, 37]. For example, for nq = 3, the
noise algebra N and its commutant N ′ are:

N =
(
I2 ⊗M2

)
⊕M4, N ′ =

(
M2 ⊗ I2

)
⊕ I4. (11)

The component M2 ⊗ I2 corresponds to a DFS that can
store one qubit of information. We now apply our algo-
rithm to find this DFS. The encoded state has the form
ρ =

(
ρ1 ⊗ I2/2

)
⊕ 04 and we denote the encoding matrix

by U . The function to maximize is then

J (U) =
1

8

3∑
k=1

4∑
n=1

|Tr(PUEkU
†Pσ(2)

n )|2. (12)

Choosing a random initial matrix for U , and following
the algorithm in Table I, we obtain an encoding matrix
that indeed encodes in the above DFS. Since there are
many different matrices U that encode in the same sub-
space/subsystem, each run of the algorithm gives a dif-
ferent U that encodes in this DFS.

Noise with symmetry-breaking perturbations.—As
mentioned earlier, symmetry is crucial for the existence
of a DFS, so when the noise model has no symmetry,
the above algorithm is the only way to find the best
subspace/subsystem encoding. However, if the noise
model is highly asymmetric our results indicate that no
MNS’s provide significantly reduced noise, and this is
not unexpected. Nevertheless, if the noise model can be
considered to be a perturbation of a symmetric noise
model, the DFS for the symmetric model will provide a
relatively good encoding scheme for the perturbed noise
model. Our primary question is whether there exists
an MNS (for the perturbed noise) that can provide a
better encoding (under the perturbed noise) than that
provided by the subspace/subsystem that is the DFS for
the symmetric noise. From now on when we refer to “the
original DFS” we will mean the subspace/subsystem
that is the DFS under the symmetric noise model (but
that experiences noise under the perturbed noise model).

As our first example we consider an nq-qubit system
under the collective noise model ρ̇ = γzD[Sz]ρ, which
applies to trapped-ions [38, 39]. To break the symmetry
we add local dephasing noise for each qubit to give the
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FIG. 1. (Color online) Minimum fidelity curves for two dif-
ferent encodings UMNS and UDFS for a system subjected to
noise whose symmetry is perturbed by a global random uni-
tary: (a) δ ∈ [0, 0.1] and γtf = 1; (b) γtf ∈ [0, 0.1] and δ = 0.1
(the parameters δ, γ, and tf are defined in the text).

perturbed noise model ρ̇ = γzD[Sz]ρ + δ
∑
k γkD[Zk]ρ,

where δ is the small parameter. For nq = 3, without
the local noise terms the system has two DFS’s that are
generated by Ha = span{|001〉, |010〉, |100〉} and Hb =
span{|101〉, |110〉, |011〉}, and they can be used to encode
two independent qutrits. When the local noise is included
the collective symmetry is broken, there is no DFS, and
we can apply the MNS algorithm to find the least-noise
encoding scheme to encode a qutrit or a qubit. To encode
a qutrit, we choose ρ = (|ψ〉〈ψ| ⊗ I1) ⊕ 05 for the MNS
algorithm. After the optimization routine in Table I, we
find that the MNS is eitherHa orHb. Similarly we search
for an MNS encoding for a qubit using ρ = (|ψ〉〈ψ|⊗I1)⊕
06, and the MNS found is a 2-D subspace of either Ha

or Hb, depending on the value of γk. For instance, for
randomly chosen values, γ1 = 0.33, γ2 = 0.47, γ3 = 0.85,
we find the 2-D MNS is always a subspace of Hb. Thus
the MNS’s correspond to the original DFS’s.

As our second example we take the collective noise
model in Eq.(10) and perturb it again by the local noise
in the example above. Again we find that the MNS is
the same as the DFS for the unperturbed noise as long as
the perturbation amplitude δ is sufficiently small. These
examples indicate that for symmetric noise perturbed by
strictly local noise there is no better encoding than the
original DFS.

As our third and fourth examples we consider a sym-
metric noise model in which the Lindblad operator(s) are
perturbed by i) a randomly chosen global unitary, and ii)
a unitary that is the tensor product of single-qubit, in-
dependently selected random unitaries. In this case the
noise remains collective, in that there is a single noise
channel, but the symmetry is broken so that there is no
longer a DFS. For the symmetric noise we use the noise
model in Eq.(10). The noisy dynamics of the perturbed
model we take as ρ̇ = γ1D[VεSxV

†
ε ]ρ+γ2D[Sz]ρ, where Vε

FIG. 2. (Color online) Minimum fidelity curves for two differ-
ent encodings UMNS and UDFS for a system subjected to noise
whose symmetry is perturbed by local random unitaries: (a)
δ ∈ [0, 0.1] and γtf = 1; (b) γtf ∈ [0, 0.1] and δ = 0.05 (the
parameters δ, γ, and tf are defined in the text).

represents the random global unitary perturbation satis-
fying ||Vε − I|| = ε, with ε the small parameter. One
way to generate Vε is to parameterize it using 1

2N(N+1)
phase variables and 1

2N(N−1) angular variables. In this
case we can set the phase variables to zero and choose the
angle variables so that the sum of their squares is a small
parameter δ. In this case δ can be used as the pertur-
bative parameter since ε increases monotonically with δ
and Vε = I when δ = 0. We set γ1 = γ2 = γ because
we do not expect the relative values of γk to effect the
existence of an MNS, and apply our algorithm to find,
as a function of δ, the optimal encoding matrix UδMNS

along with its performance as characterized by Fmin. For
δ = 0 we find that Fmin = 1 and the MNS is merely
the original DFS. For nonzero δ, however, we find that
the MNS is no longer equal to the original DFS. Fur-
ther, the performance of the MNS for δ > 0 is strictly
better than that of the original DFS when subjected to
the perturbed noise. In Fig. 1 we display and compare
the minimum fidelity for the MNS to that for the origi-
nal DFS subjected to the perturbed noise. As δ tends to
zero the performances of the MNS and DFS both have a
flat plateau, confirming that the original DFS encoding
is robust against perturbations [40]. As δ increases the
difference between the performance of the MNS and the
original DFS increases, showing that the original DFS
encoding becomes increasingly less optimal as the per-
turbation increases. Analyzing case ii) in which Vε is a
tensor product of independently selected local random
unitaries, we find the same behavior as for the global
random unitary. However in this case there is less differ-
ence between the performance of the MNS and that of
the original DFS. These results are shown in Fig. 2.

Conclusion.—The above examples illustrate the abil-
ity of our numerical method to find both decoherence-free
and minimal-noise subsystems/subspaces given a set of
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noise operators {Ek}. It is important to note that this
is true even when the symmetry is not exact. In the ex-
amples we have examined, when a collective noise model
is perturbed by noise that is local to each subsystem,
the minimal-noise subsystem is merely the DFS for the
unperturbed system. However, when a collective noise
model is perturbed by a random unitary transformation,
while no DFS exists there is a minimal-noise subsystem
that is distinct from the DFS for the unperturbed sys-
tem, providing an improvement over known methods of
identification.
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