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Characterizing structural inhomogeneity is an essential step in understanding the mechanical
response of amorphous materials. We introduce a threshold-free measure based on the field of
vectors pointing from the center of each particle to the centroid of the Voronoi cell in which the
particle resides. These vectors tend to point in toward regions of high free volume and away from
regions of low free volume, reminiscent of sinks and sources in a vector field. We compute the local
divergence of these vectors, where positive values correspond to overpacked regions and negative
values identify underpacked regions within the material. Distributions of this divergence are nearly
Gaussian with zero mean, allowing for structural characterization using only the moments of the
distribution. We explore how the standard deviation and skewness vary with packing fraction for
simulations of bidisperse systems and find a kink in these moments that coincides with the jamming
transition.

PACS numbers: 45.70.-n,81.05.Rm,61.43.-j

In glassy liquids and disordered solids, heterogeneities
in local structure correlate with heterogeneous particle
rearrangement dynamics arising from thermal fluctua-
tions or applied mechanical load [1–6]. Characterizing
local structural heterogeneity is therefore important in
experiment, for example via the network of contacts and
force chains [7–10], and as a step in understanding ther-
mal and mechanical response. A simple and physically-
appealing measure of local structure that forms the basis
of historically-important theories of glassy dynamics and
plasticity is free volume [11–14]. Regions that are un-
derpacked have a larger local free volume, and therefore
ought to rearrange or yield more easily. Though intu-
itive, free volume is inherently a concept based on hard
spheres and only applies at densities below jamming.

Here we introduce a generalization of the concept of
free volume that derives from the radical Voronoi net-
work and hence applies in a consistent way to particles
interacting via any inter-particle potential at any density.
Our measure, Qk, is inspired by the observation that the
center of a particle center deviates from the centroid of
the corresponding Voronoi cell when the configuration is
disordered. In two dimensions, it is defined as

Qk ≡ (∇ · c)(Ak/Ā), (1)

where c is the interpolated field of vectors that point
from particle centers to the corresponding Voronoi cell
centroids, the divergence is taken over a Delaunay trian-
gle k with area Ak, and Ā is the average of all Ak within
the a packing. By construction, Qk is dimensionless and
has zero mean. It is sensitive to local structural hetero-
geneity and – though purely geometrical – has a clear
physical interpretation: positive/negative values respec-
tively correspond to overpacked/underpacked regions. In
addition to establishing a statistical correlation between
Qk and local relative free volume, we find that the dis-
tribution of Qk values over a packing is nearly Gaussian,

with mode and median nearly equal to the mean (zero);
hence it may be well-described by just the standard de-
viation and the skewness.

As an illustration, we calculate Qk for a system of soft
disks at a series of packing fractions that are widely var-
ied, from the dilute limit to well above the jamming tran-
sition. Morse and Corwin [15] have recently identified
geometrical features similarly based on Voronoi tessella-
tions that exhibit singularities at the jamming transition.
Here we find the standard deviation and skewness of the
Qk-distribution also exhibit kinks at the transition. Thus
there is a signature of the jamming transition in Qk, a
geometrical quantity with clear physical relevance.
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FIG. 1: (color online) Particle packing from (a) simula-
tion and (b) experiment [16, 17], with superimposed rad-
ical Voronoi tesselation (blue) and Delaunay triangulation
(green). Also shown are vectors Cp (magenta) that point from
each particle center (red dot) to the centroid of its Voronoi
cell. In (b), these are elongated by a factor of 8 for each of
visualization.

We begin by using the software package voro++ [18] to
determine the radical Voronoi tessellation, a space-filling
generalization of the standard Voronoi construction to
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polydisperse systems. In this framework, each cell edge
is determined from two adjacent circles, and is given by
the locus of points from which tangent lines drawn to
both circles have the same length. If all particle radii
are equal, the standard Voronoi tessellation is recovered.
Fig. 1 shows an example, where the Voronoi tessellation
is overlaid on an image of particles. Any two particles
with a shared Voronoi cell edge are defined as neighbors,
and from this, we generate a generalized Delaunay trian-
gulation by connecting groups of three mutual neighbors
into triangles, as shown in green in Fig. 1.

The position of a particle within its Voronoi cell is an
indicator of local variation in the packing. This moti-
vates consideration of a local anisotropy vector, Cp, for
each particle p, that points from the center of the par-
ticle to the centroid of its Voronoi cell, as shown by the
magenta arrows in Fig. 1. In monodisperse crystalline
packings with a single particle per unit cell, each par-
ticle center and the corresponding Voronoi cell centroid
coincide; therefore Cp = 0 for all p, consistent with the
idea that Cp is a measure of the structural anisotropy.
This vector is one of several Minkowski functionals [19]
associated with a Voronoi cell, many of which have been
used to describe packing heterogeneity [20, 21]. Addi-
tionally, it has been discussed in the context of structure
in liquids [22, 23],and has been found to be correlated
with particle motion [22, 24]. As might be expected, Cp

points in the direction of excess free volume, indicating
the direction in which the particle has the most space
to move. However, local spatial variations of this vector
have not been previously explored.

Fig. 1b shows a typical example of Cp vectors for sev-
eral particles in a bidisperse packing with particle size
ratio of 3:4 and hard-sphere interactions. Vectors tend
to point in toward locally less well-packed and away from
locally more well-packed regions of the packing, reminis-
cent of sinks and sources in a vector field. Therefore it is
natural to consider the divergence of a field defined by in-
terpolating the Cp vectors over a local region. We choose
Delaunay triangles as the local regions over which to per-
form interpolation and differentiation of the Cp vectors.
This allows us to use the framework of the constant strain
triangle of finite element analysis [25] to find local spatial
variations of the Cp vectors. In particular, each triangle
is treated independently and we assume that the asso-
ciated Cp vectors define a vector field c = (cx, cy) that
varies linearly over each triangle:

cx(x, y) = dx + dxxx+ dxyy,

cy(x, y) = dy + dyxx+ dyyy. (2)

For each triangle the six constants dx, dy, dxx, dxy, dyx,
and dyy can be determined by evaluating Eq. (2) at
the triangle vertices and inverting the resulting matrix
equation. If the triangle coordinates are shifted so that
the centroid of the triangle is located at the origin, the

vector (dx, dy) is equivalent to (c̄x, c̄y), where the av-
erages are taken over the triangle vertices. The tensor
dij = ∂ci/∂xj is independent of the origin location and
describes the spatial variation of the c field over the tri-
angle, with the divergence given by Tr(dij).
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FIG. 2: (color online) (a) Probability density of normalized
divergence of center-to-centroid vectors for the experimen-
tal packing of bidisperse hard spheres shown in Fig. 1b (cir-
cles) and best-fit Gaussian (solid curve). Qk > 0 regions are
more tightly packed than their surroundings, hence we call
these regions overpacked. Qk < 0 regions are more loosely
packed than their surroundings, and are therefore labeled un-
derpacked. The inset shows the probability density and Gaus-
sian fit with a logarithmic y-axis, highlighting the deviation of
the data from Gaussian, particularly in the negative tail. b)
PDFs of triangle-based free area fraction, 1−φk, and Voronoi-
based free area fraction, 1 − φp, for the same packing. These
distributions are more complicated and less intuitive than for
Qk. Inset: Qk correlates well with a fractional deviation from
the global packing fraction, and therefore is similar to a rel-
ative free area. All dashed lines indicate the median of the
data set of the same color.

From the divergence theorem, all contributions from
interior particles cancel upon performing the sum

∑
kQk

over all triangles in a packing, leaving only contributions
from the boundary particles. This results in 〈Qk〉 = 0 for
infinite systems and for systems with periodic boundary
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conditions. The interpretation of Qk is then physically
intuitive: triangles with Qk < 0 are less well packed than
their surroundings, so we label these regions as under-
packed, while triangles with Qk > 0 are locally more
tightly packed than their surroundings, so we refer to
these regions as overpacked. Thus Qk is a measure of
relative free volume, and, as shown below, the statistical
correlation is quantitative.

Fig. 2a shows the probability density of Qk for the ex-
perimental bidisperse system shown in Fig. 1b. The prob-
ability density is nearly Gaussian with a small, positive
mean resulting entirely from the finite boundaries of the
packing. Thus we may characterize packings to a great
degree just from the standard deviation and skewness of
the Qk distribution. To the extent that the probability
density is truly Gaussian and the Qk values are spatially
uncorrelated [26], the packing is random in a very simple
sense. But since adjacent triangles share two Cp vectors,
there must be at least short-range correlations. Never-
theless, Qk is closer to a Gaussian random variable than
any other structural quantity previously used to charac-
terize random packings. Furthermore, deviations from
Gaussianity (e.g. underpacked particles in the tail of the
distribution) are likely to have important physical conse-
quences [27].

To build intuition, we now compare Qk with the lo-
cal area fraction. Fig. 2b shows the probability density
for two standard measures, based on particle area per
Voronoi cell and per Delaunay triangle. The probability
densities for these quantities have irregular complicated
shapes, where the median differs significantly from the
mode for each distribution. There is no clear feature
demarcating under- versus over-packed regions. Never-
theless, the magnitude of Qk is on the order of – and
statistically correlated with – the relative free area de-
fined as (φk − φ)/φ where φk is the triangle-based area
fraction and φ is the global area fraction of the sample.
This is demonstrated by the contour plot of relative free
area versus Qk in the inset of Fig. 2b. Similar plots in [26]
show that good correlation holds at all packing fractions,
but less so for dilute systems due to the development of
long tails away from the heart of the distributions. We
may thus consider the size of Qk as a semi-quantitative
indication of local free volume relative to the average
packing.

For the remainder of the paper, we use the Qk distri-
bution as a tool to characterize structure versus packing
fraction for simulated systems in two-dimensions. Static
packings are created using four different protocols. For
the first, a large number N = 5000 to N = 80,000 of
points are placed at random in a box. For each N , we
find that the average moments of Qk over 200 configu-
rations are independent of N . For the second protocol,
we generate several packings of non-overlapping monodis-
perse disks. Here, each disk has a radius equal to 1, and a
proposed new disk is only accepted and placed in the box

if it does not overlap with any existing disks. These pack-
ings contain anywhere from N = 1000 to N = 160,000
disks, spanning area fractions from φ ≈ 0.003 to φ ≈ 0.5.
At least 40 packings are generated for each value of φ.

For the final two protocols, we numerically generate
systems composed of N = 2048 soft repulsive disks with
mass M . Two particles i and j interact with the pairwise
potential

Vij =
ε

2

(
1− rij

Ri +Rj

)2

Θ

(
1− rij

Ri +Rj

)
, (3)

where rij is the distance between the particle centers, Ri

and Rj are the particle radii, Θ(x) is the Heaviside step
function, and ε sets the energy scale. To prevent crystal-
lization, we use a 50− 50 mixture of particles with a size
ratio of 1.4. The disks are initially placed at random in
a periodic simulation box with a packing fraction φ, and
are then allowed to move according to two different pro-
cedures. The units of length, mass, and energy are 2Ravg,
M , and ε respectively, where Ravg ≡ N−1

∑
mRm is the

average particle radius.

For the third protocol, thermalized configurations are
generated at a very low temperature using molecular dy-
namics simulations at constant NVT, performed using
LAMMPS [28]. Beginning at a temperature of Tstart =
0.05, we slowly cool the system to T = 10−7 over 5× 106

time steps. The system then remains at T = 10−7 for
an additional 107 time steps. The fourth and final proto-
col corresponds to an infinitely fast quench from infinite
to zero temperature. Beginning with the initial random
configuration, we minimize the total energy to a local
minimum using the FIRE algorithm [29]. Each protocol
was repeated 500 times at each packing fraction.

For all final configurations, the Qk distributions and
moments are computed. The low-φ behavior of the stan-
dard deviation is emphasized in the main plot of Fig. 3a.
The results for protocols 2− 4 appear to converge nicely
to the value 0.5746 ± 0.0002 found from the random
point patterns of protocol 1. Fig. 3b shows a similar
convergence of the skewness consistent with the value
−2.086 ± 0.0002 obtained for point patterns. This vali-
dates the protocol methods, and serves to establish the
low-φ “ideal gas” limiting behavior of the Qk distribu-
tions.

As φ increases away from zero, the moments of the Qk

distribution change in a protocol-dependent fashion. As
seen, the thermalized configurations are closer than the
rapidly-quenched configurations to the randomly-placed
non-overlapping sphere configurations. The Qk distribu-
tions all become narrower with increasing φ, as shown
by the standard deviation plot. And as judged from the
skewness plot, the distributions generally become more
Gaussian – as mentioned earlier. However the quenched
configurations show an initial increase in the skewness
magnitude before decreasing towards zero.
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FIG. 3: (color online) Standard deviation (a) and skewness
(b) of the Qk distributions versus global packing fraction φ.
Each data point represents the average value of the speci-
fied moment over several configurations; the associated un-
certainty is smaller than the symbol. The main plots em-
phasize the low φ behavior, which approaches the same con-
stant value for all preparation protocols shown: infinitely-fast
quench (×), thermal (◦), randomly placed non-overlapping
monodisperse circles (+), and random point patterns with
φ = 0 (dashed line). Insets show behavior near φc. Rescaled
distributions of φc are plotted as solid curves, with color indi-
cating preparation protocol from which they were determined.
The moments of Qk have a kink that coincides with the peak
in the respective φc distribution.

The insets in Fig. 3 show zoom-ins of the moments
near the critical packing fraction φc, where the sys-
tems become jammed. For our simulations, there is
a distribution of φc values due to the finite system
size [30, 31]. Each protocol produces a different distribu-
tion [32, 33]. Here, the average and standard deviation
are φc = 0.8409 ± 0.0012 for the quenched protocol and
φc = 0.8465 ± 0.0005 for the thermalized protocol. As
expected, the φc values are smaller and more widely dis-
tributed for quenched configurations, since thermalized
configurations have more opportunity to relax [32]. The
unnormalized φc distributions are individually rescaled
to reach the respective data curve in the insets of Fig. 3,
in order to mark the jamming transitions.

The key striking result evident in the Fig. 3 insets is
that a signature of the jamming transition exists in the
Qk distributions. Namely, the standard deviation and
the skewness both show a kink where the φc distribu-
tions are peaked. For the quenched protocol, the skew-
ness kink is smallest and may deviate from slightly φc.
For the thermalized protocol, the behavior near φc is con-
siderably more dramatic. In particular, the kinks are ex-
tremely pronounced in that the derivatives of standard
deviation and of skewness versus φ actually change sign
on opposite sides of the transition. Furthermore, there
is non-monotonic behavior below the transition, with the
standard deviation and the skewness exhibiting a mini-
mum and maximum, respectively, at a packing fraction
a few percent below φc. As a measure of static struc-
ture versus φ, the Qk distribution is thus even capable
of signaling a precursor that the onset of jamming is im-
minent. Since this happens for the thermalized but not
the quenched configurations, it could be related to the
dynamical hard-sphere glass transition; however, the ex-
trema are at different φ values. Note that the differences
in the trends for the two protocols implies that details of
the local structure are sensitive to protocol even though
other quantities that are singular at the jamming transi-
tion, such as the average contact number, scale the same
way with increasing pressure for packings prepared using
different protocols [32].

In conclusion, we have shown that Qk is a geometrical
measure of structure, with the physical meaning of a rela-
tive free volume, which displays a strong signature of the
jamming transition. It is particularly easy to interpret
Qk in terms of overpacked and underpacked regions since
the Qk-distribution has zero mean, by construction, and
is nearly Gaussian for non-dilute systems. Though all our
examples are two-dimensional, the concept of Qk may
be extended to any dimension by appropriate Voronoi
construction. For thermal and sheared systems, there
is longstanding interest in identifying structural features
that lead to dynamical activity such as heterogeneous
particle rearrangements and shear bands. The correla-
tion of Qk with dynamics, as well as with structural pre-
dictors of rearrangements found by machine learning [6],
may now be studied. This could give new meaning to
the concept of “free volume,” which has been assumed
in many theories to affect dynamics and thereby control
the glass transition and glassy rheology [13].
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