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Abstract 
 

We experimentally demonstrate a tunable hybrid qubit in a five-electron GaAs double quantum dot.  

The qubit is encoded in the (1,4) charge regime of the double dot, and can be manipulated completely 

electrically.  More importantly, dot anharmonicity leads to quasi-parallel energy levels and a new anti-

crossing, which help preserve quantum coherence of the qubit and yield a useful working point.  We 

have performed Larmor precession and Ramsey fringe experiments near the new working point, and 

find that the qubit decoherence time is significantly improved over a charge qubit.  This work shows a 

new way to encode a semiconductor qubit that is controllable and coherent. 
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The promise of massive computing power from the intrinsic parallelism in a quantum system has 

driven extensive research activities on spin and charge dynamics in semiconductor nanostructures [1-3].  

Over the past decade, significant experimental progress has been achieved in demonstrating coherent 

manipulation of spin- and charge-based qubits.  Specifically, a variety of spin qubits have been shown to 

have extremely long coherence times, though high-fidelity two-qubit gates remain a difficult technical 

challenge [4-12].  Charge qubits [13-21], on the other hand, can be manipulated very fast because of the 

strong electrical interaction, which unfortunately also leads to usually short coherence times.  Finding a 

balance between coherence and maneuverability is thus still an open problem in the pursuit of a scalable 

solid state quantum computer. 

Hybrid qubit [22, 23] in a Si/SiGe heterostructure is one of the proposals that attempt to address this 

issue [24-26].  By encoding into two three-electron states in a double dot that have different spin 

symmetries, relaxation is suppressed.  The qubit states also have extended sweet spots, which reduce the 

effect of charge-noise-induced dephasing [27-33].  Lastly, the qubit can be manipulated purely 

electrically.  Recent experiments in SiGe-based devices have clearly shown that hybrid qubits are indeed 

really fast, and their coherence times are significantly longer than charge qubits [34, 35]. 

An intriguing question for us is whether the hybrid qubit design can be adapted to a GaAs double 

quantum dot.  While as a host material for spin qubits GaAs suffers significantly from all the nuclear 

spins in the lattice, the fast operation speed of a hybrid qubit may alleviate this problem.  The lighter 

electron mass and simpler band structure in GaAs should definitely help in terms of qubit tunability, as 

has been shown repeatedly in the past quantum dot research work in GaAs [2]. 

Here we experimentally demonstrate a single tunable hybrid qubit in a GaAs double quantum dot.  By 

working near the (2,3)-(1,4) instead of (2,1)-(1,2) charge transition, we succeed in tuning our hybrid 

qubit to an energy splitting in the microwave frequency range.  More importantly, asymmetry and 

anharmonicity in one of the dots leads to a new anti-crossing point between the quasi-parallel energy 

levels of the qubit, yielding a versatile and coherent working point.  We have performed both Larmor 

precession and Ramsey fringe experiments on this qubit, and demonstrated that at this new working 

point the qubit has a *
2T  time in the order of 10 ns, much longer than a normal charge qubit.  Our results 

clearly illustrated how a few-electron system can have high degrees of tunability and quantum coherence, 

and appropriate frequency for qubit control.  The simple band structure of GaAs allows us to establish a 

clear understanding on how our qubit works.  Further explorations in a GaAs double dot could also help 

us clarify the roles played by the various electrical noises such as piezoelectric and polar couplings to 
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phonons.  Furthermore, the general understanding of the roles played by level degeneracy and dot 

deformation can also lead to better qubit designs in other (potentially more coherent) substrate materials 

such as isotopically purified Si. 

The system we study is a conventional gated double dot on a 0.3 0.7/GaAs Al Ga As  heterostructure. 

Figure 1(a) is a scanning electron microscopy (SEM) image of the device.  Together with H1 and H2 

gates, D1 through D5 gates define the double dot, and Q1 through Q3 gates define a quantum point 

contact (QPC).  The QPC works at a 0.2 mV dc bias, and acts as a charge sensor for the qubit.  With D5 

gate determining the energy detuning across the double dot, a particularly interesting quantity is the 

QPC’s transconductance dI/dVD5, which is obtained using a lock-in amplifier and superposing a small ac 

voltage of amplitude of 0.1 mV on D5.  Microwave signals can also be applied on gate D5, through a 

semi-rigid coaxial transmission line from room temperature.  We are able to access the few-electron 

regime for this double dot, as illustrated by the charge stability diagram given in Fig. 1(b).  

Denoting the electron number in the left and right dots as (N,M), we focus on the low-energy electron 

dynamics in the region near the (2,3)-(1,4) charge transition for the rest of this paper.  This region is not 

exactly where the original hybrid qubit works, which was designed near the (2,1)-(1,2) transition.  

However, since the two core electrons in the right dot occupying the ground orbital state do not 

participate in the low-energy dynamics at the crossing, the relevant physics is very similar to the three-

electron physics between  (2,1) and (1,2) configurations.  Thus we will continue to use the three-electron 

nomenclature to describe the dynamics near the (2,3)-(1,4) crossing [36]. 

The low-energy sector of the double dot spectrum consists of three five-electron states.  Suppose the 

lowest-energy orbital states in the right dot are 0ψ , 1ψ  and 2ψ .  With 0ψ  occupied by the two core 

electrons, the additional one electron in the right dot in the (2,3) regime will occupy 1ψ , while the 

additional two electrons in the (1,4) regime will both occupy 1ψ  if they form a singlet, or 1ψ  and 2ψ if 

they form a triplet state.  Thus near the charge transition there are three relevant low-energy states [36]:

RL
S ↑=1 , 

RL
S↑=2 , and 

RLRL
TT ↑↓−↑=

3
2

3
13 0 , in the 

2
1=zS  manifold (the 

2
1−=zS  manifold is degenerate with and decoupled from the 

2
1=zS  manifold, and has identical 

charge dynamics.  However, in the absence of an applied magnetic field, the nuclear spins in the 

substrate could cause these two manifolds to mix and limits our *
2T  time), identical to those for a hybrid 
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qubit.  States 2  and 3  form our hybrid qubit in the (1,4) region, where they are the two lowest-energy 

states. 

Our explorations of charge transitions indicate that different orbital states in the right dot have 

different charge responses to the applied gate voltages.  Figure 2(a) shows the charge stability diagram 

near the (2,3)-(1,4) transition.  Here an additional short pulse of duration 300 pspT =  and magnitude 

135 μeVpV =  is repeatedly superposed onto the DC sweep of the D5 gate [17, 18].  Two different sets 

of charge oscillation peaks can be observed, marked by the blue and purple dashed lines.  They clearly 

have distinct slopes, which indicate that orbital states 1ψ  and 2ψ  (which are the underlying orbital states 

for states 2  and 3 ) have different lever arms relative to D3 and D5 gates.  Consequently, when the 

gate voltage on the right dot is varied, the energies of states 2  and 3  change differently.  In fact, this 

variation in the response to the applied gate voltages can already be seen in Fig. 1(b), where two 

different charging lines with slopes -1.68 and -2.17 are marked with purple and blue dashed lines. 

The different responses by 1ψ  and 2ψ  to the applied voltages can be explained by the two states 

having different ‘centers of charge’, which in turn indicates that the right dot is strongly anharmonic.  In 

a harmonic dot, 1ψ  and 2ψ  would have corresponded to the two degenerate P orbitals of the Fock-

Darwin states that are symmetric around the dot center, and would have responded to the applied gate 

voltages in the same manner at the lowest order.  In our sample, on the other hand, the double dot energy 

diagram is shown in Fig. 2(b), where states 2  and 3  are not parallel as functions of the energy 

detuning.  Instead they cross at a particular detuning, and the crossing becomes an anti-crossing after 

tunnel coupling to the left dot is taken into consideration.  Compared with the original hybrid qubit, the 

Hamiltonian of this three-level system can be written as: 

                             
1 2

1

2

2
H - 2 0

0 - k 2

ε
ε

ε δ

Δ Δ⎛ ⎞
⎜ ⎟= Δ⎜ ⎟
⎜ ⎟Δ +⎝ ⎠

                                                (1) 

Here ε  is the energy detuning between the three states, and can be tuned across the inter-dot charge 

transition (as shown in Fig. 2a), δ is the singlet-triplet splitting within the right dot, and k represents the 

different lever arms of states 2  and 3 .  Among the off-diagonal terms,  and  are tunnel couplings 

from 1  to 2  and 3 .  Direct coupling between 2  and 3  vanishes because of their different spin 

symmetries. 
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Instead of having a constant singlet-triplet splitting, states 2  and 3  now have different 

dependences on the gate voltage, represented by the new phenomenological parameter k for state 3 .  

Since there are two different sets of transition lines mixed with each other in Fig. 2(a), states 2  and 3  

should be nearly degenerate at ~ 0ε , which means ~ 0δ .  Thus for simplicity we choose 0δ =  in our 

calculations.  Figure 2(b) shows the energy levels calculated using Eq. (1) with 12 9.2 GHzΔ = , 

22 7.5 GHzΔ = , 1.3k =  and 0δ = , while Fig. 2(c) gives the energy splitting between the two lowest 

levels.  States 2  and 3  are not parallel anymore, with level spacing reaching a minimum of ~ 2.5 

GHz at 55~ε μeV. 

To verify our model, we characterize the energy levels using microwave spectroscopy [21].  For this 

and following experiments, a lock-in amplifier’s TTL signal is used to chop the pulses to generate the 

sequences, so that half of the TTL period has no pulse, and the lock-in amplifier is also used to measure 

the QPC’s corresponding current change dI [35].   

As shown schematically in Fig. 2(b), we initialize our double dot at a negative detuning point, where 

the ground state, state 1 , is non-degenerate and well separated from the excited states.  Consequently 

our initialization procedure is quite robust.  We then increase the detuning adiabatically, over a time 

period of 10 ns, to the region around the 2 - 3  anti-crossing.  A 20 ns microwave pulse is then applied.  

Only on resonance can the qubit be excited from the ground state to the excited state.  The system is 

then measured after the detuning is adiabatically lowered in another 10 ns.  Figure 2(d) shows the 

resulting QPC conductance signal.  The resonant line agrees well with the calculated result from 

Hamiltonian (1) presented in Fig. 2(c).  

Figure 2 shows that, compared with the original hybrid qubit [19, 21], our qubit has some distinct 

characteristics.  Because of the anharmonicity and asymmetry in the right dot, our single-dot energy 

levels can be modified by changing the gate voltage, making this hybrid qubit tunable.  On the negative 

side, the almost parallel dispersion of the two hybrid qubit states in the original design (and in Fig. S1 of 

[36]) becomes a non-parallel dispersion when we adjust D3 gate voltage, which potentially weakens the 

qubit against decoherence effects of the environmental charge noise.  Considering that hybrid qubit was 

designed to suppress effects of charge noise by employing parallel energy levels [35, 37], it is crucial to 

clarify the coherence properties of our variant.  Below we explore how the changes of our qubit, 

particularly the non-parallel energy levels, affect its coherence. 
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We measure Larmor oscillations and Ramsey fringes near the working point of our hybrid qubit in 

order to characterize its decoherence.  As in the microwave spectroscopy experiment, we initialize the 

qubit in the ground state 1  in the (2,3) region at 55~ −ε μeV.  We then take the qubit to 0~ε  

adiabatically using a pulse with a rise time of 3 ns, as shown in Fig. 2(b).  The system remains in the 

ground state.  We then apply a non-adiabatic pulse to drive the qubit to 55~ε μeV, deep in the (1,4) 

region, where the qubit will evolve freely, like the Larmor precession of a spin in a magnetic field, with 

the excited state acquiring an additional phase relative to the ground state that is proportional to the 

pulse width pT .  After this free evolution at 55~ε μeV, the detuning is returned non-adiabatically to

0~ε , and then adiabatically to 55~ −ε μeV in 2 ns, at which point we measure the QPC current.  If the 

qubit has evolved to the ground (first excited) state at 55~ε μeV, it would be in 1  ( 2 ) at the end of 

the pulse sequence.  Since states 1  and 2  have different numbers of electrons in the left dot, they can 

be differentiated by the QPC. 

Figure 3(a) shows the results of Larmor precession of the qubit as a function of the pulse width pT  at 

detuning 55~ε μeV, or where 0~tε  ( tε  is defined as the energy detuning relative to the new anti-

crossing point between the qubit levels).  The minimum energy gap at 0tε =  is obtained from the 

oscillation frequency of 2 2.43 GHzΔ = , which is consistent with the minimum frequency we extract 

from Fig. 2(d) using microwave spectroscopy.  Figure 3(b) is a cut along the green dashed line in Fig. 

3(a), at 0~tε .  Fitting the curve using ( )( ) ( )2 *2
0 2/ cosAexp t t T tω θ− − + , we obtain *

2 8.10 nsT = .  This 

decoherence time is much longer than the value we obtained in the charge qubit regime [36], and values 

obtained in other charge qubit experiments [13, 19, 20]. 

This significant increase in decoherence time originates from the anti-crossing of the quasi-parallel 

energy levels in Fig. 2(c).  Specifically, the anti-crossing and the corresponding optimal point suppresses 

the charge noise induced dephasing.  Furthermore, the different spin symmetries of the qubit states 

suppress the qubit relaxation.  Therefore, even though our qubit has lost some of the coherence 

preserving ability of the original hybrid qubit design, it still possesses much better coherence properties 

than an ordinary charge qubit.  Moreover, compared with the original hybrid qubit, the new anti-crossing 

point of this qubit, which resides completely in the (1,4) charge region, enables x-axis rotations on the 

Bloch sphere with a long coherence time. 

We have also performed a Ramsey-fringe experiment to further clarify the coherence properties of our 
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qubit in the vicinity of the anti-crossing point at 0~tε .  Figure 4(a) presents the pulse shape of the 

Ramsey experiment, which consists of a free evolution around the z-axis in between two 3 2π  rotations 

around the x-axis.  Varying the amplitude tV  of the middle pulse between the two x-rotations allows the 

qubit to reach different detuning points.   

Figure 4(b) shows the Ramsey fringes as a function of the free evolution point tε  and the evolution 

duration wT .  As expected, the Ramsey fringes decay rapidly, in sub-nanoseconds, when 0tε < and the 

qubit is in the charge-qubit regime, near the (2,3)-(1,4) charge transition.  The different charge 

distributions of the qubit states lead to fast decoherence due to electrical noises [13, 17].  In contrast, 

when 0tε ≥ , the qubit is deep in the (1,4) charge region, with both qubit states having similar charge 

distribution.  The slowly increasing energy gap also provides some protection for the qubit against 

charge noise.  As a result, the fringes remain quite visible even beyond 6 ns, and the qubit has much 

longer decoherence time than in the 0tε <  region.  The remaining decoherence is possibly due to 

hyperfine interaction with nuclear spins and residue effects of the charge noise because our levels are 

only quasi-parallel [38].  Figure 4(c) shows three representative cuts, at 30tε = , 0 and 30 μeV−  from 

top to bottom respectively.  The corresponding decoherence time *
2T  extracted from the curves are *

2 ~T

5.8, 8.30 and 0.74 ns.  Figure 4(d) presents decoherence time *
2T  obtained from Figure 4(b), as a 

function of the detuning point tε . 

We note here that the presence of the new anti-crossing point for our hybrid encoding allows qubit 

operations around both x- and z-axis with an enhanced coherence time *
2T  of up to 8.3 ns.  This is 

different from the Si hybrid qubit, where x- and z-rotations are performed at different inter-dot detuning, 

so that they have different coherence times [35].  Furthermore, on the positive detuning side for our 

system [deeper into the (1,4) charge regime], *
2T  only decreases gradually and slowly due to the quasi-

parallel energy levels. 

In conclusion, we have experimentally demonstrated a tunable hybrid qubit in a five-electron GaAs 

double quantum dot.  Specifically, we show that the qubit is tunable because of an anharmonic and 

asymmetric quantum dot potential.  The qubit energy levels anti-cross instead of being parallel, yielding 

a new working point.  The non-parallel energy levels make the qubit more susceptible to charge noise, 

but the new working point gives it higher degree of tunability.  To clarify the controllability and 

coherence of this new qubit, we have performed Larmor precession and Ramsey fringe experiments.  
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We find the qubit decoherence time is quite long, in the order of 10 ns, when it is deep in the (1,4) 

charge configuration, much slower than in the regular charge qubit regime.  

Our results show that this variant of hybrid qubit in a GaAs double quantum dot is both controllable 

and coherent, and acts as a useful platform to study coherent control in a semiconductor nanostructure.  

To establish its viability as a practical scalable qubit, more work is needed in establishing high fidelity 

gates, and to identify the optimal approach for a two-qubit gate.  In addition, splitting our right dot into a 

double dot could make it even more tunable, and could open up new avenues for qubit manipulation. 
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FIGURE CAPTIONS 

 

FIG 1. (a) A SEM image of the sample structure. The density of the 2DEG (95nm below surface) is 
11 -23.2 10 cm×  with a mobility of 5 21.5 10 cm Vs× .  The electron temperature in the device is about 150 mK.  (b) 

Charge diagram of the double quantum dot at 3 0.25 VD = − , 4 0.35 VD = − , 2 0.7 VH = − .  The voltages of 

gates D2 and H1 are kept as constant, too.  The purple and blue dashed lines present two different charging lines 

with slop of -1.68, -2.17 respectively.  To make it clearly visible, the two dashed lines are extended along the 

charging lines. 

  



 12

 
FIG 2. (a) Charge diagrams under a short pulse 300 pspT = , 135 μeVpV =  at gate voltages of 3 0.217 VD = − , 

4 0.417 VD = −  and 2 0.717 VH = − .  (b) The simulated energy levels of the system.  (c) The energy gap 

between the ground state and the first excited state in (b).  (d) QPC signal as a function of the excitation frequency 

f of the microwave and the detuning energy.   The green line is the energy gap given in the dashed box of (c). 
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FIG 3. (a) The Larmor precession and the associated charge oscillations as a function of the non-adiabatic pulse 

width pT  and tε .  The signal along the green dashed line is plotted in (b) with blue, while the green solid line is a 

numerical fit after subtraction of the background, and yields a dephasing time of *
2 = 8.10 ns T . 
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FIG 4. (a) The simulated energy levels and the pulse shape of Ramsey fringes.  The trajectory segments with 

different colors on the Bloch sphere correspond to the different parts of the applied pulse with the same colors. (b) 

Ramsey fringes as a function of the inserted pulse width wT  and amplitude tε .  After subtraction of the 

background signal, the three dashed lines at 30tε = , 0  and 30 μeV−  are presented and fitted from top to bottom 

in (c) with an offset current.  (d) The extracted *
2T  as a function of detuning energy tε . 

 


