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Owing to complex geometry, gyrokinetic simulations in stellarator geometry produce large num-
bers of subdominant unstable and stable, near-orthogonal eigenmodes. Here, results based on the
full eigenmode spectrum in stellarator geometry are presented for the first time. In the nonlinear
state of a low-magnetic-shear ion-temperature-gradient-driven case, a multitude of these modes are
active and imprint the system. Turbulent frequency spectra are broadband as a consequence, in
addition to a nonlinear, narrow signature at electron frequencies. It is shown that successful quasi-
linear, mixing-length transport modeling is possible in stellarators, where it is essential to account
for all subdominant unstable modes.

Heat and particle transport due to turbulence driven
by pressure-gradient-based instabilities constitutes an
important limiting factor for fusion reactor performance.
One important type of fusion device, the stellarator, is
considered a major competitor to tokamaks [1, 2], pri-
marily because it allows for steady-state operation, a
feature owing its existence to more complex magnetic ge-
ometries. Partly as a consequence of the latter, however,
microturbulence and transport in stellarators remain far
less understood than in tokamaks. At the same time,
complex geometry provides significant flexibility for tar-
geted optimization of stellarators if predictive capabili-
ties can be improved, potentially resulting in greatly en-
hanced confinement.

One of the challenges of fusion research lies in the
intractability of running costly turbulence simulations
throughout an enormous physical parameter space, par-
ticularly an issue in stellarators. Quasilinear modeling –
where heat diffusivities χ ∼ γ/k2

⊥
are estimated as the

ratio of characteristic growth rates γ to characteristic
wave numbers k⊥ – yields approximate answers at orders
of magnitude lower cost and can be used as a basis for
training ultra-fast emulators [3], making for an excellent
tool to optimize reactor operation and control. In many
cases, however, quasilinear physics are investigated tak-
ing into account only the most unstable eigenmode in the
system, while in complex stellarator geometries, many
such instabilities tend to exist concurrently. As will be
shown in this work, an appropriate reduced model must
take all such modes into account.

Subdominant – meaning of growth rate 0 < γ < γmax

– and stable modes in plasma microturbulence have re-
ceived attention in the context of anomalous transport
in tokamaks, both for the capacity of individual such
modes to contribute to the turbulent state [4–6] and the
collective role of stable modes in energy dissipation and
saturation [7–9]. Where stellarators are concerned, little
is known about such modes, aside from the existence of
subdominant modes in experimentally relevant scenarios
[10, 11]. Such considerations are of great importance

to confinement in fusion devices: turbulent excitation
of subdominant and stable modes may, through various
means, affect structure formation as well as heat and
particle transport. In this work, important aspects of
subdominant and stable mode activity in stellarators are
elucidated: their turbulent excitation, their mode struc-
ture and orthogonality, their imprint on the nonlinear
frequencies, and their role in causing transport and ef-
fect on quasilinear modeling.

In fusion plasmas, microturbulence commonly con-
tributes significantly to the overall heat and particle
transport. In such scenarios, temperature and density
gradients drive instabilities at scales somewhat larger
than the gyroradius, which in turn causes turbulence and
transport. Gyrokinetics [12] provides an extensively used
framework for investigating such processes, reducing the
six-dimensional kinetic phase space through the elimi-
nation of the gyrophase and its associated fast gyrofre-
quency. Gyrokinetics has been applied [13] to stellara-
tors mostly in the radially local limit, where flux tube
shapes depend on the toroidal position in the device, an
approach adopted here, as well. Extending the present
work to full-flux-surface computations is left to future
investigations. See Ref. [14] for details on the implemen-
tation of gyrokinetics in the Gene code [15, 16], which
will be used throughout this paper.

Figure 1 shows the linear eigenvalue spectrum at the
wavenumber ky = 0.7 – the nonlinear transport peak
– for profile parameters ωT i ≡ a(∇Ti0)/Ti0 = 3 and
ωn ≡ a(∇ne0)/ne0 = 1, with magnetic shear ŝ = −0.045
and adiabatic electrons. All unstable modes are ion-
temperature-gradient-driven modes, their number – 66
for the default case – far exceeding typical numbers in
tokamak core plasmas [17]. The magnetic geometry is
identical to that of the HSX “bean” flux tube in Ref. [11],
although flux tube choice does not significantly affect re-
sults. Note that these parameters were not chosen to
reflect a specific experimental scenario. a denotes the
minor radius, Ti0 = Te0 and ne0 the background ion tem-
perature and electron density, and wavenumbers are nor-
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FIG. 1. (Color online) Linear eigenmodes by growth rate γ

and frequency ω. Colors denote nonlinear excitation p, see the
text, in the quasi-stationary state. A total of 104 eigenvalues
are shown here, 66 of which are linearly unstable. Note: the
point at γ ≈ 0.2 consists of two distinct modes, see Figs. 3,4.

malized to the inverse ion sound gyroradius ρs. This
case can be resolved by as few as 9 radial modes and
72 parallel grid points, for a total of 165888 eigenval-
ues. See Ref. [11] for a discussion of the simulation
domain—similar settings allow converged simulations in
the present case. For the default case, the full spectrum
was computed, whereas for the quasilinear study, Gene’s
iterative solver obtained up to 200 modes per ky and ωT i.
Color-coded in Fig. 1, the excitation p of each eigen-

vector gi in the nonlinear state gNL is given by the time
average of the projection
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which ranges from 0 (orthogonal gi and gNL) to 1 (when
gi ∝ gNL). The most unstable mode only has p <

∼ 0.25,
due to a large number of subdominant and stable modes
contributing to the nonlinear state, whereas data [17] for
a typical tokamak case yields p >

∼ 0.7. Importantly, both
cases exhibit fairly orthogonal eigenmode spectra, with
the stellarator being even more orthogonal: the scalar
product, defined equivalently to p, of the most unstable
with 199 subdominant and stable modes, exceeds 0.2 for
only two modes, compared with 22 in the tokamak. Intu-
itively, this is explained by invoking the large number of
regions in ballooning space where unstable or weakly sta-
ble modes may peak, a consequence both of the complex
parallel geometry and small magnetic shear.
While it is possible to use the direct eigenvalue decom-

position for almost all analyses, Fig. 2 shows the cumu-
lative composition of the nonlinear state by eigenmode
truncation for orthogonalized data: All unstable modes
combined are only able to describe slightly more than half
of the nonlinear features of the system, compared with
more than 70% for the first mode alone in the tokamak,

FIG. 2. (Color online) Projection p (black; see the text) for
orthogonalized eigenmodes; nonorthogonal modes are unsta-
ble up to iEV = 66 (blue dashed line). The upper, red curve
shows the square root of the sum, truncated at iEV, of p

2, a
measure of how well a given truncation cumulatively describes
the nonlinear state.

FIG. 3. (Color online) Eigenmode structure in the electro-
static potential as a function of extended ballooning angle,
for the six most unstable modes: iEV = 1 (solid black), 2 and
3 (dashed red and blue), 4 and 5 (dash-dotted pink and cyan),
and 6 (dotted green).

assigning significantly more importance to the physics of
stable modes. Furthermore, there exist two visible breaks
in the cumulative projection: one at iEV ≈ 5 – related to
the mode structures discussed next – and one at the tran-
sition between unstable and stable modes at iEV = 66.
Examining the eigenmode structure of the six most un-

stable modes, see Fig. 3, one observes that the low-field
side is preferred, where the ballooning angle θ is an in-
teger multiple of 2π. Modes peaking at radial wavenum-
bers kx 6= 0 (where |θ| > π) occur in symmetric pairs
of near-identical eigenvalues. The sixth mode is repre-
sentative of many of the higher-iEV modes, where more
complex structures appear and unique mode identifica-
tion becomes very difficult.
This last property is evident in Fig. 4, where eigenvalue
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FIG. 4. (Color online) Effect of the driving gradient ωT i on
the first six eigenvalues (same colors as in Fig. 3), with ωT i

increasing left-to-right from 3 in steps of 0.3. For iEV = 6,
mode identification becomes difficult at higher ωT i, and plus
signs/triangles denote two possible paths.

dependence on the driving gradient is shown. The most
unstable modes are easily identified, exhibiting growth
rates and frequencies mostly proportional to ωT i. Again,
iEV = 6 is representative of higher mode numbers, in
that at this point, identification is no longer possible, and
small changes in input parameters will result in rather
different eigenvalue order. While a caveat for automated
analyses based on iEV, this issue becomes less prominent
when summing over large numbers of modes. These prop-
erties, however, also illustrate that linear critical gradi-
ents would have to be computed separately for all modes,
and may not exist in all cases.

Extracting frequency signatures from nonlinear simu-
lations and comparing with linear mode frequencies is
a valuable tool in identifying eigenmode activity in the
nonlinear state. While in many cases, linear frequencies
match nonlinear spectra [5], recent work in HSX geom-
etry demonstrated that nonlinear frequencies in trapped
electron mode turbulence may deviate strongly [11]: in
addition to electron-direction frequencies much lower
than linear predictions, the nonlinear data included a
strong and narrow ion-direction band of frequencies pro-
portional to ky. This latter feature could not be ex-
plained by the behavior of linear eigenmodes.

In the present case, while solving for the full linear
eigenmode spectrum is rather expensive, nonlinear sim-
ulations are much cheaper (although still much more ex-
pensive than solving for a small subset of linear modes),
resulting in statistically very accurate transport and fre-
quency data. The latter is shown in Fig. 5, where non-
linear frequencies are plotted as a function of ky. The
wide range of linear frequencies of the unstable modes –
ranging from zero to approximately 0.5 – is visible in the
positive range of nonlinear frequencies. The broad-band
structure of the latter is a direct consequence of the large

FIG. 5. (Color online) Nonlinear frequencies as a function of
wavenumber. Colors indicate intensity, normalized separately
for every ky. The broad band at positive ω corresponds di-
rectly to the linear frequencies of the unstable modes, with
an additional narrow band of negative (electron-direction) fre-
quencies of nonlinear nature.

number of subdominant linear eigenmodes, and the peak
of the (positive) nonlinear data agrees with the most un-
stable linear modes. However, a narrow band of negative
frequencies proportional to ky is also apparent. These
frequencies are not affected by changes in ωn or ωTi, and
thus cannot be attributed to electron drift waves—an ef-
fort is underway to determine its nonlinear origins. While
cases exist where nonlinear features affect transport [11],
no indication is given that the nonlinear frequency fea-
ture in the present simulations has a measurable effect in
that regard.
Turning to turbulent heat transport, quasilinear mod-

els – where nonlinear transport is estimated from linear
mode properties and characteristic length scales [18] –
are investigated next. To account for stellarator geome-
try [19, 20], one needs to use a generalized expression for
the heat diffusivity (using Gene normalization):

χQL
i = C

∑

k,i

Sk
wk,iγk,i
〈k2

⊥k,i〉
, (2)

with

〈k2⊥〉 =

〈

k2y

[

1 + (gxy + ŝθ0(kx)g
xx)2

]

gxx

〉

. (3)

Here, C is a scalar and model constant. Respectively,
sums over indices k and i are over ky wavenumbers and
unstable eigenmodes. The shape of the nonlinear flux
spectrum is described by the ky-dependent factor Sk,
while w = Qi/n

2, heat flux divided by squared den-
sity, is the quasilinear weight of a given mode. θ0(kx) =
0,±2π, . . . is the extended ballooning angle at the low-
field side for a given kx. The quantities Λ and |∇Ψ|2 in
Ref. [19] become – omitting normalization factors – the
metric coefficients gxy and gxx, respectively. For the av-
erage 〈. . .〉, the electrostatic potential Φ of a given eigen-
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FIG. 6. (Color online) Transport predictions from quasilin-
ear models as a function of driving gradient. Model 1: red
diamonds, 2: blue triangles, 3: pink squares, 4: cyan crosses,
5: green stars. The actual transport from a nonlinear scan is
shown as a black dashed line, and is only recovered by mod-
els that include all unstable modes. For reference, a dotted
red line denotes model 1 when the 5 most unstable modes
are included, exhibiting little difference from only the most
unstable mode.

mode is used as a weight:

〈A〉 ≡

∫

dθA|Φ|2
∫

dθ|Φ|2
. (4)

With these definitions, the following quasilinear mod-
els are constructed, most of which are reduced versions of
Eq. (2), increasing in complexity: 1. accounting for only

the most unstable mode, χQL
i ∝ maxi γi; 2. retaining

all unstable modes,
∑

i γi; 3. additionally taking into ac-
count the term

∑

i(γi/〈k
2
⊥
〉); and 4. furthermore includ-

ing the quasilinear weights w. The separation of terms
in these models is not to suggest that such simplified
models are universally applicable, but is rather meant to
measure contributions from different terms.
Models 1 through 4 use shapes Sk that merely match

the nonlinear data from a reference simulation. An ad-
ditional model 5, based on the more general saturation
rule of the QuaLiKiz code [21], models the shape of the
flux spectrum by power laws and is otherwise identical
to model 4. It estimates the peak of the nonlinear flux
spectrum from the maximum of wγ/〈k2

⊥
〉, then fitting

distinct power laws for larger and smaller ky. Possible
further improvement of this model would involve inter-
polating this maximum between discrete ky.
Quasilinear heat diffusivities are multiplied by ωT i to

arrive at heat fluxes Qi, and C is determined from the
base nonlinear run at ωT i = 3. As shown in Fig. 6, model
1 predicts far too small an increase of Qi with ωT i, and
even when including the five most unstable modes, lit-
tle improvement is seen. All refinements applied after
model 2 – the inclusion of k⊥ corrections and transport
weights – have little impact on the predictions; for k⊥,

this is a consequence of the low magnetic shear in HSX
geometry, and cannot be expected to hold true in higher-
shear configurations. Note also that model 5 is somewhat
more successful than other models at capturing the pre-
cise shape of the ky-resolved transport as ωT i is increased.
As zonal flows are known to regulate transport, it is

helpful to study the scaling of the shearing rate ωs =
〈k2xΦzonal〉x,t relative to the linear growth rate [10, 22–25],
where Φzonal is the flux-surface-averaged potential. For
the present case, the shearing rate increases at constant
increment from 0.32 to 0.57, somewhat less steeply than
the peak γ. This is consistent with increasing/decreasing
transport in zonal-flow-regulated turbulence being re-
lated to increasing/decreasing γ/ωs, respectively—a pre-
requisite for quasilinear modeling to apply.
In summary, the excitation, behavior, and impact of

subdominant and stable eigenmodes in stellarator turbu-
lence have been investigated. Unlike in tokamaks, the
turbulent energy is split more evenly between a large
number of eigenmodes. Nonlinear frequency analysis
shows a correspondingly broad range of excitation of lin-
ear frequencies, in addition to a nonlinear narrow-band
structure at opposite sign, an object of future study. It
remains to be ascertained whether such features are a
common occurrence in stellarator microturbulence [11].
More generally, the present results indicate that in or-

der to employ linear physics to predict transport behav-
ior in stellarators – as is done in stellarator optimization,
where quasilinear or linear models are often employed as
proxies [26, 27] – one is required to take the full unstable
eigenmode spectrum into account.
While these findings show that a significant increase in

computational effort is required to solve for all unstable
modes when computing quasilinear fluxes in stellarators,
they also confirm for the first time that for this class
of machines, quasilinear modeling yields good transport
predictions. Not as efficient as for tokamaks, it nonethe-
less requires only a tiny fraction – on the order of a per-
cent – of the nonlinear simulation cost. Future investi-
gations will need to confirm whether these results apply
to kinetic-electron or full-flux-surface simulations, where
other important physics come into play.
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