
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Gyrotropic Magnetic Effect and the Magnetic Moment on
the Fermi Surface

Shudan Zhong, Joel E. Moore, and Ivo Souza
Phys. Rev. Lett. 116, 077201 — Published 18 February 2016

DOI: 10.1103/PhysRevLett.116.077201

http://dx.doi.org/10.1103/PhysRevLett.116.077201


Gyrotropic Magnetic Effect and the Magnetic Moment on the Fermi Surface

Shudan Zhong,1 Joel E. Moore,1, 2 and Ivo Souza3, 4

1Department of Physics, University of California, Berkeley, CA 94720
2Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
3Centro de F́ısica de Materiales, Universidad del Páıs Vasco, 20018 San Sebast́ıan, Spain
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The current density jB induced in a clean metal by a magnetic field B is formulated as the
low-frequency limit of natural optical activity, or natural gyrotropy. Working with a multiband
Pauli Hamiltonian, we obtain from the Kubo formula a simple expression for αgme

ij = jBi /Bj in
terms of the intrinsic magnetic moment (orbital plus spin) of the Bloch electrons on the Fermi
surface. An alternate semiclassical derivation provides an intuitive picture of the effect, and takes
into account the influence of scattering processes in dirty metals. This “gyrotropic magnetic effect”
is fundamentally different from the chiral magnetic effect driven by the chiral anomaly and governed
by the Berry curvature on the Fermi surface, and the two effects are compared for a minimal model
of a Weyl semimetal. Like the Berry curvature, the intrinsic magnetic moment should be regarded
as a basic ingredient in the Fermi-liquid description of transport in broken-symmetry metals.

PACS numbers: 78.20.Ek,75.47.-m,71.18.+y

Introduction.— When a solid is placed in a static mag-
netic field the nature of the electronic ground state can
change, leading to striking transport effects. A prime
example is the integer quantum Hall effect in a quasi
two-dimensional (2D) metal in a strong perpendicular
field [1]. Novel magnetotransport effects have also been
predicted to occur in 3D topological (Weyl) metals, such
as an anomalous longitudinal magnetoresistence [2, 3],
and the chiral magnetic effect (CME), where an electric
pulse E ‖ B induces a transient current j ‖ B [4]; both
are related to the chiral anomaly that was originally dis-
cussed for Weyl fermions in particle physics [5, 6]. In all
these phenomena the role of the static B-field is to mod-
ify the equilibrium state, but an E-field is still required to
put the electrons out of equilibrium and drive the current
(since E = −Ȧ, the vector potential is time-dependent
even for a static E-field).

Recently, the intriguing proposal was made that a
pure B-field could drive a dissipationless current in cer-
tain Weyl semimetals where isolated band touchings (the
“Weyl points,” or WPs) of opposite chirality are at differ-
ent energies [7]. The existence of such an effect was later
questioned [8], and the initial interpretation as an equi-
librium current was discounted. (Indeed, that would a vi-
olate a “no-go theorem” attributed to Bloch that forbids
macroscopic current in a bulk system in equilibrium [9].)
Subsequent theoretical work suggests that the proposed
effect can still occur in transport, as the current response
to a B-field oscillating at low frequencies [10–13].

At present the effect is still widely regarded as being
related to the chiral anomaly [10] (or, more generally, to
the Berry curvature of the Bloch bands [11–14]), and is
broadly characterized as a type of “CME.” We show in
this Letter that the experimental implications and micro-
scopic origin of this effect are both very different from the

CME (as defined in Ref. [4], consistent with the particle-
physics literature [15]). Experimentally, the effect is real-
ized as the low-frequency limit of natural gyrotropy [16]
in clean metals (see also Ref. 14), and we will call it the
“gyrotropic magnetic effect” (GME). Both E and B op-
tical fields drive the gyrotropic current, but at frequen-
cies well below the threshold for interband absorption
(~ω � εgap) their separate contributions can be indenti-
fied. This allows to infer from a low-frequency optical-
rotation measurement the reactive current induced by the
oscillating B-field. The GME is predicted to occur not
only in certain Weyl semimetals, but in any optically-
active metal (a necessary but not sufficient condition is
lack of an inversion center, and a sufficient but not nec-
essary condition is structural chirality [17–19]).

Existing expressions for the natural gyrotropy current
at low frequencies involve the Berry curvature of all the
occupied states (and velocities of empty bands) [11–14],
at odds with the notion that transport currents are car-
ried by states near the Fermi level εF. Integrals over all
occupied states involving the Berry curvature also appear
in calculations of a part of the low-frequency optical ac-
tivity [20–22], and of the intrinsic anomalous Hall effect
(AHE); in the case of the AHE, a Fermi surface (FS)
reformulation exists [23]. We find that the GME is not
governed by the chiral anomaly or the Berry curvature,
but by the intrinsic magnetic moment of the Bloch states
on the FS. Our analysis also takes into account the finite
relaxation time τ in real materials, which is shown to
weaken the effect at the lowest frequencies. The magni-
tude of the GME in the clean limit ωτ � 1 is estimated
for the optically-active semimetal SrSi2 [24].

CME versus GME.— Both effects can be discussed by
positing a linear relation between j and B,

ji = αijBj . (1)
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FIG. 1. (a) Chiral magnetic effect in a T -broken Weyl semimetal in a static B-field. The left- and right-handed Weyl nodes are
at the same energy εL = εR, but the enclosing Fermi pockets are not in chemical equilibrium (µL 6= µR) due to the application
of an E ‖ B pulse, and this drives the current [Eq. (3)]. (b) Gyrotropic magnetic effect. P symmetry is now broken along
with T , leading to εL 6= εR. The Fermi pockets are in chemical equilibrium, µL = µR = εF, and an oscillating B-field drives the
current [Eq. (17)]. The bottom of each panel shows the Fermi pockets, and the arrows represent the Fermi velocities.

Suppose we use linear response to evaluate α for a clean
metal, describing the B-field in terms of a vector poten-
tial that depends on both q and ω. The result will de-
pend on the order in which the q→ 0 and ω → 0 limits
are taken [10–12], much as the compressibility and con-
ductivity are different limits of electrical response. The
CME tensor αcme can be obtained from Eq. (1) in the
equilibrium or static limit of the magnetic field (setting
ω = 0 before sending q → 0), with an additional step
needed to describe the E-field pulse. The GME tensor
αgme is extracted directly from Eq. (1) in the transport
or uniform limit (sending q → 0 before ω → 0) that
describes conductivities in experiment. (Here “ω → 0”
means ~ω � εgap, but note that ωτ � 1 because the
clean limit τ → ∞ is assumed; effects caused by finite
relaxation times in dirty samples will be discussed later.)
Only αgme is a material property, since the details of the
E-field pulse producing nonequilibrium are missing from
αcme. Below we derive microscopic expressions for both.

Chiral magnetic effect.— The tensor α calculated in
the static limit is isotropic, αij = αstatδij , with

αstat = −e
2

~
∑
n

∫
[dk] f0kn (vkn ·Ωkn) = 0 , (2)

where [dk] = d3k/(2π)3, the integral is over the Bril-
louin zone, f0kn = f(εkn) is the equilibrium occupa-
tion factor, vkn = ∂~kεkn is the band velocity, Ωkn =
−Im〈∂kukn| × |∂kukn〉 is the Berry curvature, and −e is
the electron charge. Equation (2) was derived in Ref. [25]
using the semiclassical formalism [26], and we obtain the
same result from linear response [27]. The fact that αstat

vanishes (see below) is in accord with Bloch’s theorem [9].
To turn the above “quasiresponse” into αcme, let us

recast Eq. (2) as a FS integral. Integrating by parts
produces two terms. The one containing ∂k ·Ωkn picks
up monopole contributions from the occupied WPs, and

vanishes because each WP appears twice with opposite
signs [43]. In the remaining term we write ∂kf

0 =
−v̂Fδ

3(k− kF) with v̂F the FS normal at kF, and intro-
duce the Chern number Cna = (1/2π)

∫
Sna

dS (v̂F ·Ωkn)

of the a-th Fermi sheet Sna in band n [23, 43]. After
assigning different chemical potentials to different sheets
to account for the effect of the E-field pulse Eq. (2) be-
comes αcme = −(e2/h2)

∑
n,a µnaCna, leading to the cur-

rent density j = αcmeB [4, 9]. In equilibrium µna = εF,
and using

∑
n,a Cna = 0 we find j = 0, as per Eq. (2).

For a Weyl semimetal with two Fermi pockets with
C = +1 and C = −1 placed at slightly different chemical
potentials µL and µR [44] [Fig. 1(a)], a current develops,

j = (e2/h2)B(µR − µL) . (3)

Gyrotropic magnetic effect.— Symmetry considera-
tions already suggest a link between the GME and nat-
ural gyrotropy. Both j and B are odd under time rever-
sal T , and j is odd under spatial inversion P while B is
P -even, and so according to Eq. (1) the GME is T -even
and P -odd, same as natural gyrotropy [16].

To make the connection precise, consider the cur-
rent density induced by a monochromatic optical field
A(t, r) = A(ω,q)ei(q·r−ωt) at first order in q,

ji(ω,q) = Πijl(ω)Aj(ω,q)ql . (4)

The T -even part ΠA
ijl of the response tensor is antisym-

metric under i↔ j. It has nine independent components,
and can be repackaged as a rank-2 tensor using [45, 46]

ΠA
ijl = iεilpα

gme
jp − iεjlpα

gme
ip (5a)

αgme
ij =

1

4i
εjlp

(
ΠA
lpi − 2ΠA

ilp

)
. (5b)

At nonabsorbing frequencies αgme(ω) is real and ΠA(ω)
is purely imaginary, but otherwise both are complex.



3

From now on we assume ~ω � εgap, so that only intra-
band absorption can occur. In this regime αgme satisfies

jBi = −iωPB
i = αgme

ij Bj (6a)

ME
i = −(i/ω)αgme

ji Ej , (6b)

where E = iωA and B = iq ×A, and PB and ME are
oscillating moments induced by B and E respectively.
The gyrotropic current jgi = ΠA

ijlAjql = jBi + jEi has

contributions from both B and E, with jB given by
Eq. (6a) and jE = iq ×ME. The dissipated power is
Re(jg · E∗)/2 = ωεjlpqlIm(αgme

ij )Re(A∗
iAp), confirming

that Reαgme and Imαgme control the reactive and dis-
sipative gyrotropic responses respectively.

In the long-wavelength limit Eq. (6a) describes a trans-
port current induced by B in an optically-active metal
(the direct GME), and Eq. (6b) describes a macroscopic
magnetization induced by E; the dc limit of this inverse
GME has been previously discussed for metals with he-
lical crystal structures [47].

To derive Eq. (6), consider a finite sample of size L. Us-
ing Eq. (20) of Ref. [46] for σA

ijl = (1/iω)ΠA
ijl we find [48]

αgme
ij = (ω/2i)

(
χem
ij − χme

ji

)
+ (E. Q. terms) . (7)

“E. Q.” denotes electric quadrupole terms that keep αgme

origin-independent at higher frequencies [46, 49], but do
not contribute to jB or ME when ~ω � εgap, as they
are higher-order in ω than the first term. The low-
frequency gyrotropic response is controlled by the mag-
netoelectric susceptibilities χem

ij = ∂Pi/∂Bj and χme
ij =

∂Mi/∂Ej . The dynamic polarization PB
i can be decom-

posed into T -even and T -odd parts (1/2)(χem
ij − χme

ji )Bj
and (1/2)(χem

ij + χme
ji )Bj [50], and Eq. (6a) corresponds

to the former. Similarly, Eq. (6b) gives the T -even part
of the magnetization induced by E. (The T -odd part of
the magnetoelectric susceptibilities describes the linear
magnetoelectric effect in insulators such as Cr2O3.)

In brief, the GME is the low-frequency limit of natu-
ral gyrotropy in P -broken metals, in much the same way
that the AHE is the transport limit of Faraday rotation
in T -broken metals. While the intrinsic AHE is governed
by the geometric Berry curvature [23, 26] and becomes
quantized by topology in Chern insulators, the GME is
controlled by a nongeometric quantity, the intrinsic mag-
netic moment of the Bloch states [51].

To establish this result let us return to periodic crystals
and derive a bulk formula for αgme at ~ω � εgap. From
Kubo linear response in the uniform limit we obtain [27]

ΠA
ijl =

e2ωτ

1− iωτ
∑
n

∫
[dk]

∂f

∂εkn

[
− gs

2me
εiplvkn,jSkn,p

+
vkn,i
~

Im〈∂jukn|Hk − εkn|∂lukn〉 − (i↔ j)
]
. (8)

(The calculation was carried out for a clean metal where
formally τ = 1/η and η → 0+ [52]. Alternately one

could retain a finite τ to give a phenomenological relax-
ation time in dirty metals, and indeed the semiclassical
relaxation-time calculation to be presented shortly gives
the same Drude-like dependence on ωτ as Eq. (8).) Skn

is the expectation value of the spin S = (~/2)σ of a Bloch
state, gs ' 2 is the spin g-factor of the electron, and me

is the electron mass. Inserting Eq. (8) in Eq. (5b) gives

αgme
ij =

iωτe

1− iωτ
∑
n

∫
[dk] (∂f/∂εkn)vkn,imkn,j , (9)

where mkn = −(egs/2me)Skn + morb
kn is the magnetic

moment of a Bloch electron, whose orbital part is [26]

morb
kn =

e

2~
Im〈∂kukn| × (Hk − εkn)|∂kukn〉 . (10)

At zero temperature, we can replace ∂f/∂εkn in Eq. (9)
with −δ3(k− kF)/~|vkn| to obtain the FS formula

αgme
ij =

e

(2π)2h

iωτ

iωτ − 1

∑
n,a

∫
Sna

dS v̂F,imkn,j . (11)

A nonzero mkn requires broken PT symmetry, but the
GME can only occur if P is broken: with P symmetry
present m−k,n = mkn and v̂F(−kF) = −v̂F(kF), lead-
ing to αgme = 0. Without spin-orbit coupling, only the
orbital moment contributes.

Equations (6) and (11) are our main results. The GME
is fully controlled by the bulk FS and vanishes trivially
for insulators, contrary to the AHE where the FS formu-
lation misses possible quantized contributions [23].

According to Eq. (11), the reactive response Reαgme

is suppressed by scattering when ω � 1/τ . It increases
with ω, and levels off for ω � 1/τ (satisfying this con-
dition without violating ~ω � εgap requires sufficiently
clean samples). The opposite is true for the dissipative
response Imαgme, which drops to zero at ω � 1/τ and
becomes strongest at ω � 1/τ . In this lowest-frequency
limit jB → 0, and Eqs. (6b) and (9) for the induced mag-
netization reduce to the expression in Ref. [47]. Thus, in
the dc limit only a dissipative inverse GME occurs.

Semiclassical picture.— Our discussion of the GME
assumed from the outset ~ω � εgap. Since this is the
regime where the semiclassical description of transport
in metals holds [53], it is instructive to rederive Eqs. (6)
and (11) by solving the Boltzmann equation. This pro-
vides an intuitive picture of the GME and its modifi-
cation by scattering processes. The key ingredient be-
yond previous semiclassical approaches [20–22] is the cor-
rection to the band velocity (as opposed to the Berry-
curvature anomalous velocity) in the presence of a mag-
netic field [26]: vkn = ∂~kε̃kn, where ε̃kn = εkn−mkn ·B.

In a static B-field, the conduction electrons reach a
new equilibrium state with f0kn(B) = f(ε̃kn) as the dis-
tribution function [12], and the current vanishes accord-
ing to Eq. (2). Under oscillating fields E, B ∝ ei(q·r−ωt)



4

the electrons are in an excited state with a distribution
function gkn(t, r) which we find by solving the Boltzmann
equation in the relaxation-time approximation,

∂tgkn + ṙ
∂gkn
∂r

+ k̇
∂gkn
∂k

= −
[
gkn − f0kn(B)

]
/τ , (12)

where τ is the relaxation time to return to the instan-
taneous equilibrium state described by f0kn(B(t, r)) (for
a slow spatial variation of B). Using the semiclassical
equations [26], the distribution function to linear order
in E and B is gkn(t, r) = f0kn(B(t, r)) + f1kn(t, r) with

f1kn =
∂f/∂εkn

1− q
ω · vkn + i

ωτ

[
mkn ·B+(ie/ω)E ·vkn

]
, (13)

which at ωτ � 1 reduces to the result in Ref. 12.

As the current associated with f0kn(B) vanishes, the
current induced by an oscillating B-field is obtained by
multiplying the first term in Eq. (13) with the band ve-
locity. The result in the long-wavelength limit is

jB =
ieωτ

1− iωτ
∑
n

∫
[dk] (∂f/∂εkn) vkn (mkn ·B) , (14)

in agreement with Eqs. (6a) and (9). Conversely, insert-
ing the second term of Eq. (13) in the bulk expression
for M = Mspin +Morb [26] leads to Eqs. (6b) and (9) for
the magnetization induced by an oscillating E-field.

GME in two-band models.— Consider a situation
where only two bands are close to εF, and couplings
to more distant bands can be neglected when evaluat-
ing the orbital moment on the FS (for simplicity, we fo-
cus here on the orbital contribution to the GME in the
clean limit). The 2 × 2 Hamiltonian written in the ba-
sis of the identity matrix and the three Pauli matrices is
Hk = εk1+ dk ·σ, with eigenvalues εkt = εk + tdk where
t = ±1 and dk = |dk|. Equation (10) becomes

morb
kt,i = − e

~
εijl

1

2d2k
dk · (∂jdk × ∂ldk) . (15)

For orientation we study a minimal model for a Weyl
semimetal where the FS consists of two pockets sur-
rounding isotropic WPs of opposite chirality. We al-
low the WPs to be at different energies (this requires
breaking P in addition to T ), but εF is assumed close
to both [Fig. 1(b)]. Near each WP the Hamiltonian is
Hkν = εν1+ χν~vFk · σ, where ν labels the WP, εν and
χν = ±1 are its energy and chirality (positive means
right-handed), k is measured from the WP, and vF is the

Fermi velocity. From Eq. (15) morb
kν = −χν(evF/2k)k̂,

and only the trace piece αgme = (
∑
i α

gme
ii ) /3 survives is

Eq. (11); in the clean limit each pocket contributes

αgme
ν = ∓1

3

e2

h2
χν~vFkF =

1

3

e2

h2
χν(εν − εF) , (16)

where the minus (plus) sign in the middle expression cor-
responds to εν < εF (εν > εF). Summing over ν and us-
ing

∑
ν χν = 0 [54] gives αgme = (e2/3h2)

∑
ν χνεν . For

a minimal model ν = R, L, and the GME current is

jB = (e2/3h2)(εR − εL)B . (17)

Equation (17) looks deceptively similar to Eq. (3) for
the CME. The prefactor is different, but the key differ-
ence is in the meaning of the various quantities, and in
their respective roles. To stress this point, we have in
both equations placed the “force” that drives the current
at the end, after the equilibrium parameter that enables
the effect. The GME current is driven by the oscillating
B-field, while εL and εR are bandstructure parameters,
with εR− εL reflecting the degree of structural symmetry
breaking that allows the effect to occur. Equation (3) is
“universal” because of the topological nature of the FS
integral involved, while Eq. (17) is for spherical pockets
surrounding isotropic Weyl nodes. For generic two-band
models [55], the non-FS expression found in Refs. [11, 12]
for the orbital contribution to αgme can be recovered from
Eq. (9) in the clean limit [27].

We emphasize that breaking T is not required for the
GME. If T is present (and P broken), the minimum
number of WPs is four, not two [56]. In the class of
T -symmetric Weyl materials so far discovered, T relates
WPs of the same chirality and energy. Mirror symme-
tries connect WPs of opposite chirality so that jB = 0,
as expected since these symmetries tend to exclude op-
tical activity [18, 19]. Fortuitously, the predicted Weyl
material SrSi2 has misaligned WPs of opposite chirality
due to broken mirror symmetry [24]. Its optical activity
coefficient ρ can be estimated from the energy splitting
between WPs. Neglecting spin contributions that were
not included in Eq. (17), each WP pair contributes [27]

ρ = (2α/3hc) (εL − εR) , (18)

with α the fine-structure constant and c the speed of
light. The calculated splitting |εL − εR| ∼ 0.1 eV [24]
gives |ρ| ∼ 0.4 rad/mm per node pair, about the same as
|ρ| = 0.328 rad/mm for quartz at λ = 0.63 µm [19]. This
should be measurable in a frequency range from the in-
frared (above which the semiclassical assumptions break
down) down to 1/τ , which depends on crystal quality.
When εL = εR the natural optical activity vanishes in
equilibrium, but a nonequilibrium gyrotropic effect can
still occur due to the chiral anomaly [21, 27].

In summary, we have elucidated the physical origin of
currents induced by low-frequency magnetic fields in met-
als, in terms of the magnetic moment on the FS. Optical
rotation measurements in the range 1/τ � ω � εgap/~
can be used to determine the reactive response Reαgme.
Unlike the CME [57] or the photoinduced AHE [58], no
detailed model of nonequilibrium is required to quantify
the GME, and efficient ab initio methods already exist
to compute the needed orbital moments [59].
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Note added: In another paper [60] submitted concur-
rently with the present one, the role of orbital moments
in the natural gyrotropy of metals was also recognized.
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