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We study the effects of Coulomb interaction between 2D Weyl fermions with anisotropic dispersion
which displays relativistic dynamics along one direction and non-relativistic dynamics along the
other. Such a dispersion can be realized in phosphorene under electric field or strain, in TiO2/VO2

superlattices, and, more generally, at the quantum critical point between a nodal semimetal and an
insulator in systems with a chiral symmetry. Using the one-loop renormalization group approach in
combination with the large-N expansion, we find that the system displays interaction-driven non-
Fermi liquid behavior in a wide range of intermediate frequencies and marginal Fermi liquid behavior
at the smallest frequencies. In the non-Fermi liquid regime, the quasiparticle residue Z at energy
E scales as Z ∝ Ea with a > 0, and the parameters of the fermionic dispersion acquire anomalous
dimensions. In the marginal Fermi-liquid regime, Z ∝ (| logE|)−b with universal b = 3/2.

PACS numbers: 71.10.Hf, 73.43.Nq, 73.22.–f, 73.21.–b

Introduction. After the discovery of time-reversal
invariant topological band insulators [1, 2], the no-
tion of topological states of matters has been ex-
tended to a broad class of systems. Recent studies
of three-dimensional (3D) Weyl and Dirac semimetals
with two-fold and four-fold degeneracy, respectively, have
demonstrated that these systems also possess quantized
topological charges and associated topological surface
states [3–11]. Since the topological invariant assigned
to each nodal point guarantees its stability, the transi-
tion from a topological semimetal to an insulator can
be achieved when pairs of nodal points with opposite
topological charges merge at the same momentum [12].
The quantum critical point (QCP) of semimetal-insulator
transitions should have emerging gapless degrees of free-
dom with zero topological charge [13, 14].

Because the topological charge of a nodal point is solely
determined by the energy dispersion around it, the van-
ishing of a topological charge at a QCP implies that at
this point the dispersion of low energy excitations must
become unconventional. Indeed, it has recently been
shown that a new type of fermionic excitations, dubbed a
3D anisotropic Weyl fermion (AWF), appears at the QCP
between a 3D Weyl semimetal and an insulator [12–14].
A 3D AWF has an anisotropic energy dispersion, which
is quadratic in one direction and linear in the other two
orthogonal directions. Such a dispersion brings about
highly unusual quantum critical behavior. Most notably,
quantum fluctuations of 3D AWFs screen the long-range
Coulomb interaction and make it anisotropic, however
the long-ranged nature of the interaction is preserved.

The screened anisotropic Coulomb potential becomes an
irrelevant perturbation in the low-energy limit, i.e., low-
energy fermions remain free quasiparticles [14]. Electron
interaction effects in other anisotropic Weyl systems have
also been studied [15, 16].

In this letter, we describe a semimetal-insulator tran-
sition and associated quantum criticality in a system of
two-dimensional (2D) AWF with long-range Coulomb in-
teraction. The role of the Coulomb interaction in 2D
nodal semimetals V (q) ∝ 1/|q| has been widely studied
with particular emphasis on graphene [17–20]. The con-
clusion is that at strong coupling, the Coulomb interac-
tion generates anomalous exponents [20]. This behavior,
however, holds only at intermediate frequencies because
the dimensionless coupling flows towards smaller values,
and below a certain energy the system necessary enters
into a weak coupling regime. In this regime the renor-
malizations are only logarithmical (marginal) [19, 22–27],
and the quasiparticle residue tends to a finite value at
zero energy, i.e., at smallest frequencies graphene pre-
serves Fermi-liquid behavior. As a consequence, interac-
tions dress physical observables, like the optical conduc-
tivity, only by extra logarithmic factors [22, 23, 28, 29].

We argue that the behavior changes fundamentally
when a semi-metal is brought to the quantum criti-
cal point of the semimetal-insulator transition, at which
pairs of nodal points merge. In this case, the low energy
excitations around a gapless point are 2D AWFs with
linear dispersion in one direction and quadratic in the
other [30–38], i.e., a 2D AWF displays relativistic and
non-relativistic dynamics simultaneously.
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FIG. 1: (Color online) Evolution of quasiparticle properties
as the energy scale varies. There are three energy scales E1 ∼
Λe−b1N/ logN , E2 ∼ Λe−b2N , and E3 ∼ Λ/NN characterizing
each region. Here b1,2 are constants of O(1), and v(E), A(E),
Z(E) are the velocity, the inverse mass, and the quasiparticle
residue, which are running as E decreases. Λ is of the order
of the band width. The same sequence of phases also holds
when the energy E is replaced by the temperature.

We analyze the effects of Coulomb interaction in 2D
AWFs by combining a renormalization group (RG) anal-
ysis and a large N expansion. We find (see Fig. 1) that
over a wide range of energies the screened Coulomb in-
teraction is a relevant perturbation, and the system is
in the strong coupling limit and displays non-Fermi liq-
uid behavior with power-law energy dependence of the
quasiparticle residue Z ∝ Ea, where a = O((logN)/N).
This behavior starts at E1 ∼ Λe−b1N/ logN , where Λ is of
the order of the bandwidth and b1 = O(1), and extends
down to very low energy E3 ∼ Λ/(NN ). In the subrange
E3 < E < E2 < E1, where E2 ∼ Λe−b2N , b2 = O(1), the
parameters of the fermionic dispersion (the velocity and
the effective mass) also become energy dependent and
vary as powers of E with anomalous exponents O(1/N).
At even smaller energies E < E3, the system crosses over
to weak coupling behavior. However, contrary to the
case of 2D nodal semimetals, 2D AWFs do not become
free particles at the smallest frequencies. Instead, in the
limit E → 0, the system displays marginal Fermi liquid
(MFL) behavior with universal, N -independent quasipar-
ticle weight Z(E) ∝ (logE)−3/2.

The model. Non-interacting 2D AWF are described by

H0 = −A∂2
xτx − iv∂yτy, (1)

where 1/(2A) > 0 is the mass along x direction and v is
the velocity along y direction. The Pauli matrices τx,y
are used to denote the valence and conduction bands.
The absence of τz in H0 ensures that the Hamiltonian
has a chiral symmetry, which guarantees the stability
of AFW in 2D. The semimetal-insulator transition can
be described by adding to H0 a perturbation term mτx
with a constant m. Depending on the sign of m, the
system becomes either a gapped insulator (m > 0) or
a semimetal (m < 0) with two nodal points on the kx
axis with the winding numbers ±1, respectively. The
distance between two nodal points decreases as |m| is re-
duced, and at m = 0 two nodal points merge, resulting
in a gapless point with a zero topological charge [30, 31].
The anisotropic dispersion leads to the density of states
ρQCP(E) ∝

√
E, which is obviously enhanced in the low

= +
(a)

(c)(b)

FIG. 2: (a) Feynman diagrams representing the RPA boson
propagator (bold wavy line). Each fermion loop, accompanied
by a factor N , is resummed in the boson propagator. (b)
electron self-energy and (c) the vertex function.

energy limit as compared to the case of a semimetal for
which ρSM(E) ∝ E. This suggests that interaction effects
are most relevant at the QCP.

We consider long-range Coulomb interaction between
2D AWF. The corresponding effective action is

S =

∫
dτd2xψ†a[(∂τ + igφ) +H0]ψa +

1

2

∫
dτd3x(∂iφ)2,

(2)

where ψa describes a two-component fermion field with
the subscript a = 1, ..., N labeling the species of
AWF, and φ is a bosonic field which one obtains via
Hubbard-Stratonovich transformation of the instanta-
neous Coulomb potential. The subscript i = x, y, z and
the summation over repeated indices is implied. Observe
that the bosonic field φ is defined in 3D space whereas
the electron is confined to a 2D plane. Once the z-
dependence of φ, is integrated out, the Coulomb poten-
tial in momentum space becomes V (q) ∝ 1/|q|. The
dimension-full boson-fermion coupling associated with
Coulomb potential is g = e/

√
ε, where e is the electric

charge and ε is determined by the dielectric constant.
The corresponding dimensionless coupling α, which ap-
pears in perturbation theory, is the ratio of the Coulomb
potential Ec ∼ A−1vg2 and the electron kinetic energy
Ekin ∼ A−1v2: α ≡ Ec/Ekin = g2/v. To control the
theory analytically, we extend the model to N fermionic
flavors and consider the large N limit. At large N , the
dimensionless coupling constant becomes αN = Nα.
Bosonic and fermionic propagators. We follow the

same strategy as in earlier approaches on large N theories
of quantum-critical behavior of itinerant fermions [20, 39]
and compute fermionic and bosonic self-energies in a self-
consistent scheme. Namely, we first compute the one-
loop bosonic self-energy (bosonic polarization operator
Π1(Ω, q)) as the latter contains N (and also, as we will
see, contains smaller power of qy compared to the bare
term D−1

0 = 2(q2
x+q2

y)1/2), then use the dressed dynami-

cal bosonic propagator D−1
1 (Ω, q) = D−1

0 (q)−NΠ1(Ω, q)
to compute the fermionic self-energy and corrections to
the one-loop Π1(q,Ω) within the 1/N expansion. We
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show that the corrections depend logarithmically on the
running energy and solve the RG equations for the full
propagators using 1/N as a control parameter. Note that
this approach is qualitatively different from direct per-
turbation theory in which one expands around the bare
(unscreened) dispersion.

The evaluation of the one-loop polarization bubble is
rather involved. We present the details in the Supple-
mental Material (SM) [40] and here list the result. We
find that Π1(Ω, q) can be well approximated by the in-
terpolation formula

Π1(Ω, q) = −α

[
dxA

1/2q2
x

∆(Ω, q)1/4
+
dyA

−1/2v2q2
y

∆(Ω, q)3/4

]
, (3)

where ∆(Ω, q) = Ω2 +cA2q4
x+v2q2

y, and dx, dy, and c are
constants, whose explicit values we present in SM. This
Π1(Ω, q) is numerically very close to the actual Π1(Ω, q)
for all parameters (see SM) and matches the exact re-

sults in the three limits: (i) Π1(Ω = qy = 0) = − g2

16v |qx|,
(ii) Π1(|Ω| � Aq2

x, qy = 0) = − α
8
√
π

Γ(3/4)
Γ(9/4)

√
Aq2

x√
Ω

, (iii)

Π1(qx = 0) = − α
6
√
π

Γ(5/4)
Γ(3/4)

v2q2
y/
√
A

(Ω2+v2q2
y)3/4 . Observe that

while Π1(Ω = qy = 0) ∝ |qx| has the same functional
dependence as D−1

0 (qx) = |qx|, Π1(qx = 0,Ω ∼ vqy) ∝
|qy|1/2 is parametrically larger than D−1

0 (qy) = |qy| at
small qy [41].

We now use the bosonic propagator with Π1(Ω,q) in-
cluded and compute the one-loop fermionic self-energy
Σ1(ω,k) and vertex correction δg1. The corresponding
diagrams are shown in Fig. 2. For the self-energy, we
obtain at large αN = Ng2/v (see SM for details.)

Σ1(ω,k) = (−ig)2

∫
dΩd2q

(2π)3
G0(ω + Ω,k + q)D(Ω, q)

≡ Σω · iω − Σkx ·Ak2
xτx − Σky · vkyτy, (4)

where

Σω = γzl, Σkx = Σω + γAl, Σky = Σω + γvl, (5)

l = log(Λ/E), Λ is the upper energy cutoff, and E
is the largest of (|ω|, vF |ky|, Ak2

x). The parameters are

γz =
√

15
π3/2 (logαN )/N , γA = 0.1261/N , and γv =

0.3625/N . We see that the quasiparticle residue Z =
[1 + ∂Σ1/∂(iω)]−1 and the parameters of electronic dis-
persion acquire logarithmically singular 1/N corrections.
Observe that the correction to Z is stronger than the
corrections to v and A by logαN .

For the vertex correction we find at vanishing external
momentum and frequency

δg1 = −g2

∫
d3k

(2π)3
D(k)G0(k)G0(k) ≡ Σω. (6)

This is consistent with the Ward-Takahashi identity.

Renormalization group analysis. One can verify that
higher-order corrections contain higher powers of l. To
sum up the series of logarithms, we express the full self-
energy Σ(ω,k), the full vertex g, and the full polariza-
tion bubble self-consistently, via full Green’s functions
and full vertices, and then represent Σ(l), g(l), and Π(l)

as integrals
∫ l
dl′ over running l′, and obtain RG equa-

tions by taking derivatives with respect to the upper
limit [44]. The RG equations for Z(l), v(l), and A(l)
are (Ẋ = dX/dl)

Ż(l) = −γz(l)Z(l), v̇(l) = γvv(l), Ȧ(l) = γAA(l) (7)

where γz(l) = γz +
√

15
π3/2

1
N log v

v(l) . The product gZ is not

renormalized, as it is required by the condition that the
electric charge is a conserved quantity [45]. Solving these
equations and using l = log(Λ/E) we obtain v(E), A(E),
and Z(E) at energy E in the form

v(E)

v
=

(
Λ

E

)γv
,
A(E)

A
=

(
Λ

E

)γA
, Z(E) =

(
Λ

E

)−γz+
√

15

π3/2
γv
N l

.

(8)

We verified that same results are obtained by using
the Wilsonian shell RG [43]. The analysis of Eq. (8)
shows that there are three energy scales characterizing
the system’s behavior. At high energies, E > E1 =
Λe−b1N/ logN , where b1 = O(1), the dependence of the
fermionic propagator on E is weak, i.e., fermions be-
have as almost free quasiparticles. At E2 < E < E1,
where E2 = Λe−b2N , b2 = O(1), v and A remain close to
their bare values, but the quasiparticle residue becomes
strongly E-dependent, and the fermionic propagator at
the typical energy E acquires a non-Fermi-liquid form
with anomalous exponent γz, i.e., G ∝ 1/E1−γz . This
behavior holds also at energies below E2, but now v and
A grow as powers of Λ/E with anomalous exponents γv
and γA, respectively. The presence of anomalous dimen-
sions in the theory implies that physical observables, such
as the specific heat, the compressibility, the diamagnetic
susceptibility, etc., show unusual temperature dependen-
cies, as shown below.

The strong coupling results differ only quantitatively
from the case of graphene. In both cases, Coulomb inter-
action gives rise to anomalous exponents for the quasi-
particle residue and the fermionic dispersion.
Weak coupling limit. The behavior described by

Eq. (8) holds as long as the dressed dimensionless cou-
pling αN = (gZ)2N/v remains large. The bare value
of αN is of order N , however v(E) grows upon the flow
towards lower energies, and eventually, at E < E3 =
Λ/NN , the dimensionless coupling αN becomes smaller
than one. Once this happens, the RG equations have to
be modified because, e.g., bare |qx| in the bosonic prop-
agator becomes larger than the |qx| term in the polar-
ization operator. We evaluated the one-loop self-energy



4

and vertex corrections at small αN and found that they
are again logarithmical, but the RG parameter l is now
l = log(Em/E), where Em = g2N2/A is the energy scale
below which the

√
|qy| term in the polarization domi-

nates over the bare term |qy| in the boson propagator.
The prefactors γz, γv and γA are different from those in
Eq. (5) and are given by

γz =
3αN

8π2N
, γv =

αN
4π2N

, γA =
αN | logαN |

2π2N
, (9)

Because αN = Ng2/v, the factor N formally disappears
from (9), but we recall that weak coupling approach is
valid as long as αN ≤ 1, hence αN/N is still small in
1/N . Note that argument of the logarithm in γA contains
the coupling constant rather than the running energy,
hence it changes the form of the β function, but does not
invalidate one-loop RG. Performing the same RG analysis
as in the strong coupling limit, we find that Z(l), v(l),
and A(l) still satisfy RG equations (7), but with γ’s from
Eq. (9). Solving these equations we obtain at smallest
energies (largest l)

v(l) =
g2

4π2
l, Z(l) = l−3/2, A(l) = Aelog2 l. (10)

We see that the quasiparticle Z does not reduce to a con-
stant in the limit αN → 0 but keeps decreasing, even at
the smallest E. At the same time, we see that the series
of logarithms at weak coupling do not generate anoma-
lous dimensions, i.e., v(l) and Z(l) behave as powers of
l (the inverse mass A has a somewhat more complex de-
pendence on l, but still there is no anomalous dimen-
sion.) The logarithmic form of Z(l) implies that the
fermionic Green’s function at the smallest energies be-
haves as G(E) ∼ (logE)−3/2/E. Such behavior is gen-
erally termed as MFL. The outcome is that the weak
coupling behavior of AWF is qualitatively different from
that in graphene. In graphene, the quasiparticle Z fac-
tor tends to a finite value at zero energy [21], i.e. the
system retains Fermi-liquid behavior with well defined
quasiparticles. AWF, on the contrary, do not become
sharp quasiparticles, even at the lowest energies.

To verify our analytical analysis, we obtained the RG
flow of Z, αN ∝ 1/v, and 1/A numerically for N = 4.
(See Fig. 3.) We clearly see that v and A increase upon
the system flows to lower energies (higher l), whereas the
quasiparticle residue Z decreases, initially by a power
law, and then nearly flattens at the largest l.

Physical observables. The non-trivial flow of v, A, and
Z leads to rather non-trivial scaling relations for physical
observables [22]. We present the calculations in SM and
here list the results. At strong coupling the compressibil-
ity κ = ∂n

∂µ ∝ T 1/2+φ, the heat capacity C ∝ T
3
2 +φ, and

the diamagnetic susceptibility χdia ∝ −T−
1
2−φ, where

φ = γv + 1
2γA ≈ 0.4255/N (see also Ref. [22]). The op-

tical conductivity σα (ω) in the strong coupling regime

1/A

FIG. 3: (Color online) RG flow of the coupling constant α ∝
1/v, the effective mass 1/A, and the quasiparticle residue Z
for 2D AWF. We set the initial values αN = 4 and A = 1 and
the number of flavors N = 4. α, 1/A, Z all flow to zero. The
quasiparticle residue has power-law dependence Z(E) ∝ Ea

at intermediate energies, typical for a non-Fermi liquid, and
scales as Z(E) ∝ (1/| logE|)3/2 at the lowest energies, i.e., at
vanishing E the system displays MFL behavior.

is

σx,y (ω) ∝ N e2

~

(
ω

ω0

)±( 1
2 +φσ)

(11)

where φσ = γv − γA/2 ≈ 0.299/N and ω0 = v2/A. The
conductivity is anisotropic already for non-interacting
AFW, however the anisotropy is amplified by interac-
tions. In the weak-coupling regime

σx,y (ω) ∝ N e2

~

(
ωelog2 log Λ

ω

ω0 log2 Λ
ω

)± 1
2

. (12)

Discussion and conclusion. In this paper we studied
quantum critical behavior of 2D AWF with long-range
Coulomb interaction. We performed RG analysis and
demonstrated that interacting 2D AWFs display non-
Fermi liquid behavior at intermediate energies, with var-
ious anomalous physical properties, and MFL behavior
at the smallest energies.

There are several candidate materials for 2D AWFs.
In deformed graphene [30–32] and pressured organic con-
ductor α-(BEDT-TTF)2I3 [46], 2D AWFs emerge via the
merging of two Dirac points. In TiO2/VO2 nanostruc-
tures 2D AWFs were predicted to be intrinsic low en-
ergy excitations due to the peculiar symmetry of the sys-
tem [34–38]. 2D AWFs were also predicted theoretically
to exist under external electric field or strain in black
phosphorous (a system with a few layers of phospho-
rene) [33, 47], and this has been confirmed in a recent
angle-resolved photo-emission study [48]. Furthermore,
in some candidate systems the bare coupling constant
αN is not small [41]. For instance, in VO2, αN ≈ 1.64
based on ε ≈ 36 [49], vF = 1.5 × 105 m/s [34], and
N = 4 [36]. In black phosphorus, αN = 0.88 based
on ε ≈ 10 [50], vF = 5.0 × 105 m/s, and N = 2 [48].
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If experimentalists succeed to fabricate freely suspended
structures and tune them to the quantum-critical point,
the effective coupling constant could be 10 times bigger,
as in the case of graphene, what makes these structures
likely candidate to observe the strong coupling behavior.
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Note added. On completion of our work, we be-
came aware of a related work by G. Y. Cho and E.-
G. Moon [53]. They studied the same model as we but
employed different approximations and reached different
conclusions. We compare our and their results in the
SM [40].
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