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We produce the first concrete evidence that violation of the weak cosmic censorship conjecture can occur
in asymptotically flat spaces of five dimensions by numerically evolving perturbed black rings. For certain
thin rings, we identify a new, elastic-type instability dominating the evolution, causing the system to settle to
a spherical black hole. However, for sufficiently thin rings the Gregory-Laflamme mode is dominant, and the
instability unfolds similarly to that of black strings, where the horizon develops a structure of bulges connected
by necks which become ever thinner over time.

Introduction.—Black holes are amongst the most impor-
tant solutions of the Einstein equations. Despite their sim-
plicity, they capture some of the most fundamental aspects
of the theory. The black holes of general relativity also play
a key role in astrophysics, in particular as a description of the
compact dark objects at the centre of galaxies. This relies on
the assumption that they are non-linearly stable to small per-
turbations. Although the full non-linear stability of the Kerr
solution [1] has not been rigorously proven, there is good
evidence that it is indeed stable [2–5].

The situation is markedly different in higher dimensions,
where black holes can be dynamically unstable to gravita-
tional perturbations. This was first shown by Gregory and
Laflamme [6] in the case of black strings and black p-branes.
Their result was later generalized to boosted black strings
[7]. In a remarkable paper [8], Lehner and Pretorius used
numerical relativity techniques to study the non-linear evo-
lution of the Gregory-Laflamme (GL) instability of the five-
dimensional black string. They found that the instability un-
folds in a self-similar process which gives rise to a sequence
of black hole “bulges” connected by black strings which be-
come ever thinner over time. Furthermore, they provided
convincing evidence that this process would lead to these
thin strings completely pinching off within finite time. This
result was interpreted as evidence for a violation of the weak
cosmic censorship conjecture (WCC) [9, 10] in spacetimes
with compact extra dimensions.

Another novel aspect of higher dimensional black hole
physics is that horizons can have non-spherical topologies,
even in asymptotically flat spaces. The five-dimensional
black ring of Emparan and Reall [11, 12] is the first example.
This is a stationary solution of the vacuum Einstein equations
with horizon topology S

1 ⇥ S

2. The S

1 of the ring is a con-
tractible circle that is stabilized by the centrifugal force pro-
vided by the rotation. In terms of the standard dimensionless
“thickness” parameter n [12], black rings can be classified
as either “thin” (0 < n < 0.5) or “fat” (0.5 < n < 1). This
thickness parameter describes the relative sizes between the
S

1 and the S

2 of the ring. Fat rings are known to be unstable
under radial perturbations [13, 14]. Very recently, thin rings
have been shown to be linearly subject to a GL-like instabil-
ity [15, 16]. Given the similarities between very thin black
rings and boosted black strings, it is plausible that the non-
linear evolution of the GL instability on thin rings would pro-
ceed in a similar manner to that on black strings, thus lead-
ing to a violation of WCC in asymptotically flat spaces. This

possibility has been contemplated in the past [13, 15, 16].
Arguably, the resolution of WCC is one of the greatest open
problems in classical general relativity, as it directly affects
the predictability of the theory.

In this Letter, we report on the end state of black ring in-
stabilities through fully nonlinear, numerical evolution. For
very fat rings, the dominant instability is the axisymmetric
(‘radial’) mode found in [14]. Rings with 0.2 . n . 0.6 are
unstable under a new type of non-axisymmetric instability
which deforms the shape of the ring without substantially
changing its thickness. In analogy with blackfolds [17], we
call it an elastic mode. In these two regimes, the endpoint
of the instability is the topologically spherical Myers-Perry
(MP) black hole. On the other hand, for very thin rings
(n . 0.15) the GL instability dominates. Our main focus
here will be on thin rings, where our results suggest that
the WCC does not hold in the neighborhood of sufficiently
thin rings. A more detailed discussion of our results for fat-
ter rings, and a comparison of different angular perturbation
modes, will be presented elsewhere [18].

Numerical approach.—We use the CCZ4 formulation of
the five-dimensional Einstein vacuum equations [19, 20] in
Cartesian coordinates (x,y,z,w), with the redefinition of the
damping parameter k1 ! k1/a , where a is the lapse [21].
We choose k1 = 0.1 and k2 = 0. We have experimented with
other values, but the results do not change. We evolve per-
turbations of singly-spinning black rings which only break
the U(1) symmetry in the x-y rotational plane. The remain-
ing U(1) symmetry in the orthogonal z-w plane is exploited
to dimensionally reduce the CCZ4 equations to (3 + 1)-
dimensions using the modified cartoon method [22, 23]. We
do not expect that breaking this orthogonal U(1) symmetry
will be relevant in the context of this work.

As initial data, we start with the stationary ring of [11]
in the isotropic coordinates introduced in [14]. This allows
us to transform this solution into Cartesian coordinates. We
introduce a small amount of m = 2 (in the nomenclature of
[15]) non-axisymmetric perturbation in the conformal factor
c via

c = c0
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where c0 is the unperturbed conformal factor of the station-
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Here 0 < n < 1 and R > 0 are the ring’s thickness and radius
parameters respectively. In our simulations, we fix R̃ = 1 and
vary n . This ensures that the initial coordinate radius of the
black ring is roughly one for all values of n , but the mass and
hence the instability time scale will vary.

Our initial data violates the Hamiltonian and momentum
constraint equations. However, by using small values of A,
we can ensure that constraint violations in the initial data
are correspondingly small. These small constraint violations
are quickly suppressed by the damping terms in the CCZ4
equations. In our simulations, we choose 10�6  A  0.002.
The radial dependence of the perturbation (1) is chosen to
ensure that it is localized on the horizon and therefore does
not change the mass nor the angular momentum of the back-
ground spacetime.

In our coordinates, S = 0 is a coordinate singularity that
corresponds to another asymptotically flat region at the other
side of the Einstein-Rosen bridge. We regulate this singular-
ity using the “turduckening” approach [24, 25] by manually
restricting to S � e2, for some small e . We choose e such
that the width of the region in which S is modified is at most
50% of the unperturbed ring’s horizon.

To evolve the lapse, we use the CCZ4 (1+ log) slicing
[19] with an advection term, starting from the initial condi-
tion a = c . However, we could not use the standard Gamma-
Driver shift condition [26] as it quickly freezes the large ini-
tial values of G̃i, even with advection terms. Instead, we
evolve the shift using

∂
t

b i = F(G̃i � f (t)G̃i

t=0)�h(b i �b i

t=0)+b k∂
k

b i, (3)

where G̃i is the evolved conformal connection function and
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Y is as defined in (2), d1 and d2 are dimensionless param-
eters, and M is the mass of the unperturbed ring. For our
simulations we use F = 2/3, h = 1, d1 = 0.25 and d2 = 0.1.
The initial shift is taken to be c times the analytic shift.

We evolve the CCZ4 equations numerically on an adap-
tively refined mesh using the GRChombo code [27, 28]. We
discretize the equations in space using fourth order finite dif-
ferences and integrate in time with RK4. We use between
8 to 13 levels of refinement depending on the thickness of
the ring. The finest resolution is chosen such that the interior
of the horizon is never covered by less than 50 grid points
after gauge adjustment. At the outer boundaries we impose
periodic boundary conditions. However, the spatial extent of
the domain is made sufficiently large so as to avoid spurious
boundary effects throughout the course of the simulation.

To stop the formation of large gradients in g̃
i j

close to the
ring singularity, we add a new diffusion term to the CCZ4
equations, which is restricted to act only inside a region

amounting to less than 50% of the horizon’s interior. This is
reminiscent of shock-capturing techniques in computational
fluid dynamics [29, 30]. The additional term does not change
the evolution outside the horizon since we have enough grid
points across the horizon and the diffusion term only affects
features at very small scales. See the Supplemental Material
[31] for more details.

Results.—For rings with 0.3 . n . 0.6, we find that the
evolution is dominated by a new non-axisymmetric mode
which is distinct from the GL mode identified in [15]. Note
that this range includes both thin and fat rings. In the non-
linear regime, this new mode deforms the ring without sub-
stantially changing its thickness. We identify it as an elas-
tic mode. In Fig. 2(a) we display a snapshot of the appar-
ent horizon for a ring with n = 0.4 in the highly non-linear
regime of the evolution. The deformation caused by the elas-
tic mode can also be seen in Fig. 2 (top left). The divergence
between the maximum and minimum S

1 radii shows that the
ring is physically stretching. To measure the influence of the
GL mode, we look at the degree of non-uniformity along the
ring by plotting the maximum and minimum radius of the
S

2 of the ring as measured by cross-sectional area. The re-
sult is shown in Fig. 2 (top right). For rings in this range
of n , the minimum S

2 radius never decreases substantially,
and the growth rate of the elastic mode is larger than the GL
mode. The latter is therefore completely irrelevant as far as
the non-linear dynamics is concerned. In fact, the growth rate
of the GL mode decreases as the rings become fatter, and for
0.4 . n . 0.6 the complete gravitational waveforms show
that only the elastic mode is relevant. This new instability
always ends in a collapse into a topologically spherical MP
black hole. The m = 1 and higher m modes are also unstable
and their study will be presented elsewhere [18].

For thin rings with 0.2 . n . 0.35, we observe a competi-
tion between different modes. The waveform in Fig. 1 (top)
shows that, in the linear regime, there is an apparent mode
mixing until non-linearities become important. To gain a bet-
ter understanding of the various modes in the m = 2 sector of
non-axisymmetric gravitational perturbations, we extract the
waveforms by monitoring

h+ =
g̃

xx

� g̃
yy

2

⇣
r

R̃

⌘ 3
2
, (5)

along the z-axis. From this, we can identify the frequencies
and growth rates of the two modes by fitting the data to

A1 sin(¬v1t +j1)e
¡v1t +A2 sin(¬v2t +j2)e

¡v2t . (6)

We give further details about our fitting procedure and er-
ror estimation in the Supplemental Material [31]. In Fig. 1
(middle) we compare the data with the fit (6) to show that
they are in very good agreement. This confirms that the lin-
ear dynamics is governed by the two modes that we have
identified. In Fig. 1 (bottom) we display the frequencies and
growth rates of both the elastic and GL m= 2 modes. Our re-
sults for the GL mode agree very well with [15], however we
were only able to identify the GL mode for thin enough rings
(n . 0.4). For thicker rings, the growth rate of the GL mode
is much slower than that of the elastic mode, and hence it is
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FIG. 1. Top: complete gravitational waveform for the evolution
of the n = 0.25 ring perturbed with an m = 2 mode with ampli-
tude A = 5⇥ 10�4. The shaded part corresponds to the portion of
the evolution where the outermost apparent horizon has spherical
topology. Middle: fit (6) of the actual data in the linear regime
(red dots) for a perturbation with amplitude A = 10�5. At the early
stages of the evolution there is contamination from constraint vio-
lating modes. Bottom: Real (left) and imaginary (right) parts of the
frequency, v ⌘ w/(2p T ), of the gravitational waves in the linear
regime. Here, T is the temperature of the unperturbed ring. The
dashed lines correspond to the results of [15]. For n = 0.4 we could
not reliably extract the growth rate of the GL mode.

much harder to isolate in a fully non-linear evolution. The
fitting procedure also allows us to estimate the amplitude of
each mode in our initial data (1). Both m = 2 modes have
comparable amplitudes initially, and therefore, our simula-
tion is not biased towards the newly identified elastic mode.

Since both modes have similar growth rates for 0.2 . n .
0.35, it is not surprising that the non-linear dynamics is gov-
erned by a combination of the two. Fig. 2 (top left) shows
a significant divergence in S

1 radii for a n = 0.2 ring on a
much larger scale than the ring’s thickness. This is indica-
tive of the elastic mode dynamics. On the other hand, in
Fig. 2 (top right) we observe that GL dynamics causes this
ring to also become highly non-uniform. The combined ef-
fect of these two modes on the apparent horizon is shown
in Fig. 2(b). Even though the GL mode does grow signifi-
cantly here, the endpoint is still a MP black hole. Presum-
ably, the deformations due to the elastic mode enhance the
efficiency of the gravitational wave emission, allowing the
ring to quickly shed angular momentum and mass and col-
lapse into a spherical black hole. Therefore, no violation of

WCC is observed in this particular case.
For rings with n . 0.15, the GL mode grows fastest and

thus dominates the dynamics. In this regime, we consider the
non-linear evolution of a n = 0.15 ring with an m = 2 per-
turbation with amplitude A = 5⇥ 10�5. It turns out that for
such thin rings, the m = 4 mode grows fast enough that exci-
tations from numerical noise also become important. There-
fore, we find that the generic non-linear dynamics is gov-
erned by a combination of these two modes. In the highly
non-linear regime the apparent horizon consists of big bulges
connected by long and thin necks. One would expect that
the thin necks should themselves eventually become GL-
unstable, giving rise to a second generation of bulges con-
nected by even thinner necks. For such highly deformed
dynamical rings, the apparent horizon is no longer a single-
valued function Y : S

1 ⇥S

2 ! R, causing our horizon finder
to fail (see Supplemental Material [31]). However, in our
gauge the apparent horizon follows certain contours of the
conformal factor, c . We use these as an indication of the lo-
cation and shape of the apparent horizon in lieu of the actual
surface. In Fig. 2(c) we display the c = 0.2 contour for the
n = 0.15 ring for an m = 2 perturbation with A = 5⇥ 10�5

at t/
p

M = 33.87. This shows clear evidence that a new
generation of bulges has formed along the thin necks. We
could not continue the evolution due to the limitation in our
computational resources, but our results provide enough ev-
idence that this instability should continue in a qualitatively
similar manner as in the static black string. More precisely,
the horizon should develop a fractal structure consisting of
big bulges connected by thin necks at different scales. The
thinnest necks should reach zero size, and hence a naked sin-
gularity should form, in finite asymptotic time. Since there
is no fine-tuning involved, this result provides evidence that
WCC is violated near thin enough black ring spacetimes. We
note that a pure m= 4 perturbation also gives rise to a similar
structure. However, without the stretching effect from m = 2
the instability’s time scale is much longer as the necks are
shorter. Significant additional resources will be required to
reach the second generation of bulges in this case, however
there is no reason to expect that the endpoint should be any
different.

Conclusions.—We have studied the non-linear dynamics
of thin and fat black rings under non-axisymmetric perturba-
tions. For rings with n & 0.2 the endpoint of the instabilities
is a MP black hole with a lower angular momentum than the
original ring. On the other hand, the GL instability domi-
nates the evolution of thin enough (n . 0.15) rings, and the
endpoint should be the pinch off of the ring. This indicates
that WCC is violated around these black ring spacetimes.
Note that for these rings the dimensionless angular momen-
tum [12] is not particularly large, j ⇠ 1.12. Therefore, our
results suggest that violations of WCC can occur for asymp-
totically flat black holes with j of order one. Even though we
have only considered the D = 5 case, this conclusion should
extend to higher dimensions.

We have also identified a new, elastic-type of instability in
five-dimensional black rings. This had not been anticipated
and was not seen in [15, 16]. However, it plays a crucial role
in the endpoint of generic non-axisymmetric instabilities as
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FIG. 2. Top left: maximum and minimum inner radius of the S

1 of
the ring, as measured by the geodesic distance from the centre of
the ring to the apparent horizon. For n = 0.2 the maximum and the
minimum eventually switch due to the displacement of the bulges.
Top right: maximum and minimum areal radius of the S

2 of the
ring. (a) Apparent horizon of a n = 0.4 ring in the highly dynamical
stages of the evolution. (b) Apparent horizon of the n = 0.2 ring just
before the collapse into a spherical black hole. (c) c = 0.2 contour
for a n = 0.15 ring during the evolution.

it dominates for rings with n & 0.2. It would be very interest-
ing to do a more thorough analysis of the non-axisymmetric
gravitational perturbations of black rings and get a detailed
understanding of these elastic instabilities.

Finally, we introduced a robust and simple new method,
based on localized diffusion, to handle singularities in nu-
merical general relativity. While it is used in conjunction
with the moving puncture method in the present work, we
anticipate that it has a wider range of applications. We will
present a more detailed analysis of this in future work [32].
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