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We perform experiments and phase model simulations with a ring network of oscillatory elec-
trochemical reactions to explore the effect of random connections and non-isochronocity of the
interactions on the pattern formation. A few additional links facilitate the emergence of the fully
synchronized state. With larger non-isochronicity, complex rotating waves or persistent irregular
phase dynamics can derail the convergence to global synchronization. The observed long tran-
sients of irregular phase dynamics exemplify the possibility of a sudden onset of hyper synchronous
behavior without any external stimulus or network reorganization.
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Wave propagation of activity of oscillatory units in
rings or linear chains is a fundamental type of pattern
formation, that occurs in many biological systems, e.g.,
motion of leach [1], the segmentation clock [2], or brain
wave activities in the cortex [3]. A rotating pinwheel was
one of the first type of chemical pattern formation identi-
fied in the BZ reaction on a ring [4]. As a ring geometry
is often used in chemistry, rotating phase wave patterns
have been observed in a large number of systems, e.g., in
electrochemical reactions [5], heterogeneous catalysis [6],
coupled BZ reactors [7] and micro droplets [8]. Mathe-
matical analysis using phase models interpreted the ex-
istence and local stability of rotating waves in ring net-
works [9–11]. It was found that the fully synchronized,
zero phase lag, non-rotating state is the most attracting
solution, locally and globally. However, with increasing
system size, rotating waves with higher winding number
become more probable in the aggregate [12].
Complex engineered and biological systems can often be
described as networks of discrete, interacting units [13].
Considering the prevalence of phase waves on rings and
chains, a fundamental question is how the rotating waves
manifest in networks that are composed of a regular ring
backbone with a few additional random connections. Nu-
merical simulations with phase models on sparse directed
networks with random initial phases have shown that for
sufficiently non-isochronous oscillations, while the fully
synchronized state is locally stable, persistent irregular
phase dynamics is the typically observed behavior [14].
Such prolonged transient behavior can severely impact
system response when robust synchronization is required
as it was demonstrated with power grid models [15] or
when synchronization is undesirable, e.g., in hyper syn-
chronous neuronal discharges during seizures [16].
In this paper, we explore the type of spatiotemporal pat-
terns that can be obtained with oscillatory chemical re-
actions on bidirectional ring networks with random long
range connections. The experimental work is motivated

by phase model calculations that predict the presence of
complex rotating waves and long transients in small ran-
dom networks with sufficiently non-isochronous oscilla-
tions. The experimental conditions allow the analysis of
the dependence of pattern formation on the randomness
of the network topology and the level of non-isochronicity
of the interactions among the units.
To study the properties of complex rotating waves on
networks we consider weakly coupled, identical limit cy-
cle oscillators with a Kuramoto type phase model [17] for
phase differences in a co-rotating frame of reference

ϑ̇n =

N∑

m=1

Anmg(ϑm − ϑn). (1)

where Anm represents a coupling matrix and g(∆ϑ) is the
average effect of the coupling for oscillators with phase
difference ∆ϑ. A phase attractive coupling is assumed
with interaction function g(∆ϑ) = sin(∆ϑ− α) + sin(α).
The phase shift parameter α is an important system
property determined by the average shear flow near the
limit cycle in the direction of perturbation caused by cou-
pling [17], i.e. α quantifies the non-isochronicity of the os-
cillations induced by interactions. We note that since the
dynamics of the model equations (Eq.1) is invariant un-
der a change of α → −α, ϑ → −ϑ and t → −t, the phase
differences and the frequency shift are inverted when α
changes sign, such that sources become sinks of rotating
waves and vice versa. We assume non-normalized, bidi-
rectional coupling Amn = Anm ∈ {0, 1} on ring networks
of N = 500 oscillators with Nsc = σN additional random
bidirectional links. The initial conditions for the simula-
tions and the experiments is a rotating wave on the ring.
(Random initial conditions give comparable results.)
Due to phase attractive coupling g′(0) = cosα > 0 and
complete connectedness of the network, the fully syn-
chronized, one-cluster state is always a linearly stable
solution of (1) [14]. However, the typical behavior of
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the network starting from globally desynchronized initial
conditions, is far more complex than the intuitively ex-
pected relaxation to the one-cluster state. We character-
ize the state of the system by different order parameters.
The k-cluster order parameters Rk = 〈exp(ikϑn)〉 where
the average is taken instantaneously over all oscillators,
measure the coherence of the distribution of phases into k
evenly spaced clusters. The variance varϑ̇ of the phase ve-
locities is a measure for frequency synchronization. These
ensemble averaged measures are shown in the σ vs. α pa-
rameter plane in Figs. 1a,b.
With small σ, the original ring is divided into linear seg-
ments between the end points of shortcuts, which can
support traveling phase waves. At the interfaces where
two such traveling waves meet, the phase differences in
a state of stable synchronization are restricted. At low
non-isochronicity and low shortcut density these inter-
faces can be frozen when all topological boundary con-
ditions can be met simultaneously. We refer to such a
pattern, which does not change in time, as frozen com-
plex rotating wave pattern. When the topological bound-
ary conditions are not met (this is likely to occur with
a large number of oscillators), slowly changing interfaces
are obtained, reminiscent of vortex glasses in 2d oscilla-
tory media [18]. Both the Kuramoto order parameter R1

and the variance of the phase velocities are small in this
regime. When the shortcut density is increased, there
exists a topological cross-over to a random network with-
out linear chain segments. Therefore, when σ is increased
the system cannot maintain rotating waves and the one-
cluster state becomes globally attractive with R1 ≈ 1.
When α is increased from zero, higher shortcut densities
are required for complete synchronization (Figs. 1a-c).
At large values of non-isochronicity (α & 1) a qualita-
tively different type of behavior exists. The topological
boundary conditions for rotating phase waves along the
ring segments with stationary phase differences are very
difficult to satisfy simultaneously. Instead, the dominant
behavior is persistent irregular dynamics with nonzero
varϑ̇. The distribution of phase differences during the
transient and in frozen complex rotating patterns be-
comes bimodal, suggesting a preferred phase difference
that depends on α (Fig. 2b). The emergence of persis-
tent irregular dynamics is demonstrated in Fig. 1d by
fixing the shortcut density σ, and increasing the value of
α. At the transition between frozen and unfrozen com-
plex rotating patterns global clustering can arise result-
ing in a sharp increase in the order parameters R6 or R7.
This global order is mediated by the end points of the
shortcuts in the network (Fig. 2f) : Due to the narrow
distribution of phase differences in a phase locked state,
oscillators at the same distance to a crosslinked node have
the same phase. Global clustering is only observable in a
narrow parameter region at criticality and after a long,
system size dependent transient.
In addition, around the transition point, before a com-
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FIG. 1: (Color online) Order parameters in model (1) at time
t = 500 as functions of shortcut density σ and non isochronic-
ity parameter α averaged over ten random network realiza-
tions with N = 500 oscillators and rotating wave initial con-
ditions. (a) Color coded Kuramoto order parameter R1 and

(b) variance varϑ̇ of phase velocities. The black and the white
line in (a) and (b), respectively, mark the contour of R1 = 0.9.

The light (green) line marks the contour line of varϑ̇ = 0.2.
(c) Kuramoto order parameter as a function of σ for three
different values of α (cf.3c). (d) Mean cluster order parame-
ters R6,R7 and variance of phase velocities as functions of α
at σ = 0.15.

plex rotating wave pattern becomes frozen, very long
transient dynamics can be observed. Figure 2 shows
an example of such transient dynamics, from random
initial conditions and with negative non- isochronicity.
The time evolution of next-neighbor phase differences
demonstrates the competition between different phase
patterns, with stationary sinks of the phase waves located
at the network heterogeneities and dynamically rearrang-
ing sources which may form or annihilate upon collision
with a sink or at phase slip events. Figures 2d,e show a
transient and a stationary phase profile, respectively and
Fig.2b illustrates the time evolution of the phase differ-
ence distribution. The phase differences in the stationary
phase pattern are peaked sharply around 2π/7 result-
ing in a very precise wavelength and the formation of 7
global phase clusters. As shown in Fig. 1a, there also ex-
ists a narrow regime of partial synchronization for larger
shortcut densities which is replaced in a sharp discontin-
uous transition by persistent incoherent phase dynamics
at values of α approaching π/2 and which may be ana-
lyzed in a mean field approach [19].
To confirm the modeling results, experiments were per-
formed with an array of N = 20, 1.00 mm diameter nickel
wires on which an oscillatory metal dissolution reaction
takes place measured by currents. Numerical simulations
indicate [22] that regions of frozen rotating patterns,
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complete synchronization, and irregular phase dynamics
can be clearly distinguished even in such a small setup.
The electrodes are coupled into a ring topology with ad-
ditional random cross-connection via resistances and ca-
pacitances. We report the conductance accross the cou-
pling resistance as coupling strength K. Capacitance is
used to introduce non-isochronicity through a phase shift
in the coupling current [20] [22] . The initial condition
of the experiment is a rotating wave as shown in Fig. 3a.
First we describe the results with α=0, i.e., resistive cou-
pling. When a random cross connection was added, one
of two scenarios occurred. If the random shortcut con-
nected two elements at a distance larger than 4 units, the
system quickly converged to a fully synchronized state
similar to that shown in Fig. 3b. When the distance
between the shortcut elements was smaller, the rotating
waves jumped across the connection. Figure 3d shows
such pattern with two cross connections.

We have performed 16 independent trials adding cross-
connections successively to a ring configuration. The
mean order parameter as a function of the added num-
ber of shortcuts is shown in Fig. 3c. Only three shortcuts
were required for the average order parameter to exceed
0.90. Therefore, we can conclude that with α = 0 a rela-
tively small number of shortcuts (σ ≈ 0.15) induces full
synchrony. When α was changed to -0.97, with a paral-
lel RC coupling, we still observed rotating waves jump-
ing over the connection when the first cross-connection
was placed up to a distance of 5 units between the ele-
ments. However, when the distance was larger, instead
of full synchronization, we observed frozen complex ro-
tating pattern via the formation of a source and sink pair
(Fig. 3e). The order parameter vs. number of shortcuts
graph in Fig. 3c shows that with α = −0.97 the mean or-
der parameter starts to increase for n > 3, and it requires
relatively large number (n > 6) of random shortcuts to
achieve Kuramoto order larger than 0.90. The presence
of jumping waves and complex rotating wave patterns
thus contributes to resisting complete synchronization.
When α was further changed to -1.3, the trend of resist-
ing the fully synchronized state continued. Figures 3e,f
demonstrate the inversion of the stationary phase pro-
file, and thus the direction of the rotating waves and the
reversal of source and sink, upon switching the sign of
the non-isochronicity by adding a capacitance to the in-
dividual current instead of the coupling current [20] [22]
. All the patterns in Fig. 3 were reproduced by phase
model simulations in [22] . Long transients to both
frozen complex wave patterns and identical synchroniza-
tion were observed in experiment. A long transient over
1700s in a network with five random shortcuts near α=-
1.3 is shown in Fig. 4. The time evolution of next neigh-
bor phase differences during the transient is shown in
Fig. 4a. At least two competing wave patterns, which
are meta stable over the course of tens of oscillations and
transform via intermittent phase slips could be observed
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FIG. 2: (Color online) Long transient to a complex frozen ro-
tating wave pattern from random initial phases in a network
of N= 500 phase oscillators with α= -1.15 and shortcut den-
sity σ= 0.05. (a) Ring network with 26 additional random
shortcuts (b) Time evolution of the density of next neighbor
phase differences. The solid (red) line marks the average of
|∆ϑ|. (c) Time evolution of next neighbor phase differences
modulus π (color coded). Dark (blue) colors indicate phase
waves to the right and light (red) colors indicate phase waves
to the left. The white lines indicate phase profiles ϑn between
150 ≤ n ≤ 250 shown in sub figures (d) at t= 300 and (e) at t=
500. Large (red) circles and solid (red) lines in panels (a,d-
f) indicate nodes with shortcut connections. Black squares
in panels (d,e) indicate dynamically realized centers of phase
waves. Panel (f) shows clustering of the phases at t=500 with
R7 ≈ 0.9 and cross-links (solid lines) connecting neighboring
clusters.

for over 700 oscillations before the system settled into
the one-cluster state. At α = 0 the same network relaxes
exponentially to synchronization in 230s [22] . Numeri-
cal simulations with the phase model confirmed that by
changing α from 0 to -1.3 the lifetime of the transient
increases about 10 times and diverges as α approaches
|π/2| [22] . A density plot of next neighbor phase differ-
ences during and after the transient is depicted in Fig. 4b
and shows an asymmetric distribution with a preferred
wave length, skewed towards the initial left-handed rota-
tional state. In addition, a wide distribution of peak to
peak periods can be observed during the transient as seen
in Fig. 4c, which marks the presence of irregular phase
dynamics. A typical snapshot of a transient complex ro-
tating wave is shown in Fig. 4d. The arrows indicate the
direction of the rotations as well as the sources (oscil-
lators 9 and 18) and sinks (oscillators 2 and 11) of the
unstable rotational wave pattern. The order parameter



4

FIG. 3: The impact of shortcuts and α on the formation of
complex rotating waves and on synchronization. (a) Initial ro-
tating wave (V =1105 mV, K=0.20 mS, α=0). (b) Synchrony
induced by one long distance shortcut. (c) The mean or-
der parameter with increasing number of shortcuts at α = 0

(circles), -0.97 (squares) and -1.3 (triangles). V =1110 mV,
Cc=82 µF, K=0.10 mS at α=-0.97 and K=0.025 mS at α=-
1.3. (d) Short distance shortcuts at α=0 yield jumping waves
(V =1110 mV). (e) Long distance shortcut at α=-0.97 yields
a frozen complex rotating pattern with a source (triangle)
away from the heterogeneity (V =1110 mV). (f) Long distance
shortcut at α=0.76 yields a frozen complex rotating pattern
with a source (full square) on the heterogeneity (V =1245 mV,
Cind=1 mF, K=0.40 mS).

(Fig. 4e) clearly exhibits the transient behavior as its
value changes between approximately 0.2 and 0.6 irreg-
ularly throughout the transient until synchronization is
achieved.
In conclusion, we have observed frozen complex rotat-
ing patterns and long transients to synchronization in
electrochemical oscillations and numerical simulations
of phase oscillators on a ring network topology with
sparse random shortcuts. Depending on the sign of non-
isochronicity α, either the sinks or the sources are pinned
to endpoints of cross-connections in the network. At
increased non-isochronicity the variability in the phase
differences in a phase locked state decreases until syn-
chronization is no longer possible and persistent or very
long transient phase dynamics occurs. The presence of
long transients of irregular phase dynamics could have
relevance in the functioning of biological systems, e.g., in
neuron dynamics where pathological synchronization can
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FIG. 4: Long transient to synchronization at α = −1.3

(V =1110 mV, Cc=82 µF, K=0.033 mS). (a) Time evolution
of next neighbor phase differences. (b) Histogram of next
neighbor phase differences during the transient and the final
synchronized state. (c) Histogram of the period per cycle
of all electrodes (white bars are the individual periods and
dark bars the transient). (d) Network topology and a typi-
cal complex rotating wave pattern during the transient. Ar-
rows indicate the wave direction from sources to sinks. (e)
Time evolution of the Kuramoto order parameter where the
arrows indicate transitions between wave patterns through
phase slips.

occur without apparent external perturbation or change
of network topology. The experimentally recorded, ir-
regular transient dynamics contributes to the few experi-
mental examples of high dimensional transient chaos [21],
where system size effects on the lifetime of the transient
irregular state could be studied.
This material is based upon work supported by the Na-
tional Science Foundation under Grant Numbers CHE-
1465013. The manuscript has supplemental material [22]
.

References

[1] T. Iwasaki, J. Chen, and W. O. Friesen, PNAS 111, 978
(2014).

[2] V. M. Lauschke, C. D. Tsiairis, P. Francois, and
A. Aulehla, Nature 493, 101 (2012).

[3] G. Ermentrout and D. Kleinfeld, Neuron 29, 33 (2001).
[4] Z. Noszticzius, W. Horsthemke, W. D. McCormick, H. L.

Swinney, and W. Y. Tam, Nature 329, 619 (1987).



5

[5] H. Varela, C. Beta, A. Bonnefont, and K. Krischer, Phys.
Chem. Chem. Phys. 7, 2429 (2005).

[6] D. Luss and M. Sheintuch, Catalysis Today 105, 254
(2005).

[7] J. P. Laplante and T. Erneux, J. Phys. Chem. 96, 4931
(1992).

[8] N. Tompkins et al., PNAS 111, 4397 (2014).
[9] G. Ermentrout, J. Math. Biol. 23, 55 (1985).

[10] G. B. Ermentrout, SIAM J. Appl. Math. 52, 1665 (1992).
[11] N. Kopell and G. Ermentrout, Comm. Pure Appl. Math.

39, 623 (1986).
[12] D. A. Wiley, S. H. Strogatz, and M. Girvan, Chaos 16,

015103 (2006).
[13] R. Albert and A. L. Barabasi, Rev. Mod. Phys. 74, 47

(2002).

[14] R. Toenjes, N. Masuda, and H. Kori, Chaos 20, 033108
(2010).

[15] P. J. Menck et al., Nat. Commun. 5, 3969 (2014).
[16] P. J. Uhlhaas and W. Singer, Neuron 52, 155 (2006).
[17] Y. Kuramoto, Chemical oscillations, waves and turbu-

lence (Springer, Berlin, 1984).
[18] C. Brito, I. S. Aranson, and H. Chaté, Phys. Rev. Lett.

90, 068301 (2003).
[19] T.-W. Ko and G. B. Ermentrout, Phys. Rev. E 78,

016203 (2008).
[20] M. Wickramasinghe and I. Z. Kiss, Phys. Rev. E. 88,

062911 (2013).
[21] T. Tamás and Y.-C. Lai, Phys. Rep. 460, 245 (2008).
[22] See Supplemental Material [url], which includes Ref.[20]


