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The tube model is the cornerstone of molecular theory for polymer rheology. We test its micro-
scopic assumptions by simulating topologically equilibrated ring polymers, whose dynamics is free
from end segment relaxation. We show that a closed-form expression derived from the tube model
adapted to ring polymers quantitatively predicts the segmental mean squared displacements over
the entire range of timescales from local motion to complete equilibration, with a time-independent
local friction factor.

Stress relaxation in polymer liquids is inconveniently
slow because of molecular entanglement [1]: the chain–
like molecules interweave with their neighbors, and mu-
tually restrict sideway motions because they cannot pass
through each other. This phenomenon is generally ac-
counted for by using the tube theory [2, 3], which as-
serts that polymers move as if they are confined inside a
tube–like region. They are free to wiggle and creep along
the tube contour, but their transverse motions are con-
strained. The strength of confinement is quantified by the
tube diameter a, which is treated as a material parame-
ter to be determined by comparing measured rheological
responses with tube theory predictions [4].

The modern theory of polymer rheology was devel-
oped by incorporating various tube relaxation mecha-
nisms [5, 6]. The predominant mechanism is reptation,
which is the curvilinear diffusion of polymers along the
tube contour [3]. Incorporating reptation and two other
mechanisms, constraint release (CR) [3, 7–9] and contour
length fluctuation (CLF) [10–12], into a coherent frame-
work has yielded a highly successful molecular theory for
polymer rheology, tested in both the linear [13] and non-
linear [14, 15] regimes.

Despite its marvelous success in capturing the macro-
scopic phenomenology, the microscopic assumptions of
the tube model have not been thoroughly scrutinized.
An early molecular dynamics (MD) simulation [16] re-
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FIG. 1: Left: a ring polymer entangled with its periodic im-
ages. Right: ring rebridging moves, which equilibrate the
entanglement topology.

vealed the tube by visualizing chain motions. Later,
more detailed analyses focused on the bead mean squared
displacement (MSD), an elementary dynamical quan-
tity [16–18]. According to the tube model, for suffi-
ciently long chains the bead MSD exhibits three dynam-
ical regimes preceding free diffusion, with time-scaling
exponents 1/2, 1/4 and 1/2 respectively [1].
The first two regimes were verified by simulations [16–

18] and by neutron spin–echo experiments [19]. The
third regime, with slope 1/2, has never been unambigu-
ously observed. A recent work at best identified a 1/4-
to-diffusion crossover [18]. The lack of a distinct third
regime results from the finite length of the chains, which
compresses the width of the regime, and introduces cor-
rections from chain end motions, an unavoidable compli-
cation for linear chains.
Doubts about the tube theory have never been scarce.

Motivated by recent experiments [20] and simulations
[21, 22], fundamental assumptions of the theory have
been questioned [23] and defended [24, 25]. More cau-
tious refinements were also suggested, e.g., that the bead
friction factor, a key parameter in the model, may depend
on the range and time scale of motion [26, 27].
Are we indeed at a “turning point” [23], with the tube

model in jeopardy? To provide a new quantitative test of
the tube theory, we study the dynamics of long, randomly
entangled ring polymers. We shall show that the dy-
namics of randomly entangled rings is an excellent proxy
for entangled linear chains, with the useful simplification
that the complicating effects of chain ends are absent.
Indeed, our simulations of bead MSD for rings clearly
display the tube model scaling regimes, except for self-
diffusion at long times (since the rings are permanently
linked). Our analyses show that the entire MSD ver-
sus time, including crossovers, can be quantitatively cap-
tured by the tube theory adapted to ring polymers, an
agreement not previously achieved for linear chains.
We emphasize that to test the tube model, studying

randomly linked rings is essential. Several recent works
[28–31] have investigated the dynamics of melts of un-
linked rings, and found an unusual t−1/2 stress relaxation
rate [31], very different from entangled linear chains.
The system of concatenated ring polymers we studied
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is schematically shown in Fig. 1. In addition to eliminat-
ing chain end effects, ring polymers afford another ad-
vantage: all chain segments are statistically equivalent,
so the quality of MSD data can be improved by aver-
aging over all beads. However, the absence of free ends
also makes it impossible to equilibrate the topology by
MD simulation alone. We must introduce Monte Carlo
(MC) moves designed to alter local chain connectivity,
thus allowing rings to cross [32].
We use a standard bead–spring model for polymers

[32]. All non-bonded beads interact via the WCA po-
tential [33], which is a purely repulsive, truncated and
shifted Lennard-Jones potential. The bond energy is har-
monic, of form κ(rij − σ)2/2, where rij is the separa-
tion between bonded beads and σ the bond rest length.
A large spring constant κ = 400 kBTσ

−2 keeps bonded
beads close together, so chains cannot pass through each
other.
Our system consists of a single long ring of N beads,

in a cubic box with periodic boundary conditions (PBC).
The box dimension is chosen so that the bead number
density is ρ = 0.7 σ−3, which is dense enough to rep-
resent a melt [34, 35]. The initial ring configuration is
generated by first building a random walk of N−1 steps,
then distributing the end–to–end distance vector to all N
bonds to close the walk, and folding the ring into the sim-
ulation box by applying the PBC. To explore the effects
of ring length, we studied three systems with N = 400,
800, and 1600. For each N , we prepared 10 independent
replicas, to average over the entanglement configuration.
All MSD data reported below are averages over all beads
in the system and over all 10 replicas.
The ring configurations are equilibrated using MC

moves. We first apply bead random displacement moves
to eliminate unphysical overlaps. Then we relax the pres-
sure with hybrid MC/MD moves, in which the configu-
ration is propagated by a short MD integration, and the
new configuration accepted according to the Metropolis
rule. Next, we equilibrate the entanglement topology, by
turning on a family of rebridging MC moves (for details,
see Ref. [32]).
Two simple rebridging moves are shown in Fig. 1. The

acceptance rates are 96% for hybrid MC/MD moves,
0.45% for single strand single rebridging moves, 0.036%
for single strand double rebridging moves, and 0.027%
for double strand rebridging moves (not shown). The
number of equilibration MC steps is typically 6 × 109.
Conformational equilibrium is verified by making sure
that ring Rouse modes decorrelate in time [32], and that
our rings display random walk statistics, as expected for
a dense melts of topologically equilibrated rings.
After topological equilibration, we turn off the rebridg-

ing moves, and use NVT ensemble MD simulation to col-
lect data on bead MSD. The MD integration step unit is
0.005 τ , where τ equals σ(m/ǫ)1/2, σ and ǫ are the inter-
action range and strength of WCA potential, andm is the
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FIG. 2: Bead mean squared displacements, for three rings
with N = 400, 800 and 1600; MD results (solid) and tube
theory predictions (dashed). Inset: friction factors ζ from
linear chain simulations, with fit of form ζ(N) = ζ(∞)− c/N .

bead mass. The Nosé-Hoover thermostat is used and the
temperature is held at kBT = ǫ. With rebridging moves
turned off, we are observing the dynamics of ring poly-
mers inside a tube with fixed topology. We average over
the specific tube topology by averaging the bead MSD
over the 10 replicas. To efficiently analyze the MSD data
spanning a long time range, a multi-τ correlator [36] is
implemented. The final results for all three ring lengths
are presented in Fig. 2, with the errorbars representing
the standard deviation over 10 replicas.

The data display two prominent features. First, for
time less than 105 τ , the N -dependence is very weak.
All three data sets exhibit the first two tube model scal-
ing regimes, with predicted exponents 1/2 and 1/4 [1].
Second, for much later time, all data sets reach an N -
dependent plateau, beyond which bead MSD is constant.
This plateau is expected for randomly entangled ring
polymers, for which entanglements are permanent and
ring self-diffusion is suppressed. The later t1/2 scaling
regime [1] expected between the t1/4 and plateau regimes,
is slightly visible only for the N = 1600 case. All these
trends, as well as crossovers between regimes, can be pre-
dicted by the tube theory adapted to ring polymers, pre-
sented below. The predictions are shown as dashed lines
in Fig. 2.

Our theory treats the short and long time dynamics
separately. At short times, in regime I of Fig. 3, the beads
do not feel the tube confinement, and the chain moves by
3D Rouse motion [1]. At later times, in regimes II, III
and IV, the beads explore the tube by 1D Rouse motion,
and their MSD conforms to the region of tube contour
explored. As illustrated in Fig. 3, the tube contour may
be described by a random ring with step size of the tube
diameter a. The number of steps is Z ≡ N/Ne and the
contour length is L = Za, where Ne ≡ (a/b)2 is the
entanglement molecular weight [1].

The treatment of dynamics in regime I is identical to
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FIG. 3: Expected regimes of bead MSD regimes for tube
model. I: beads do not feel the tube, and move by 3D Rouse
dynamics. II: beads move by 1D Rouse dynamics along the
tube. III: beads move by ring reptation. IV: beads have tra-
versed the tube many times; MSD reaches a plateau.

that for linear chains. The position vector Rn of the nth
bead obeys the Langevin equation

ζ
∂Rn(t)

∂t
= K

∂2
Rn(t)

∂n2
+ fn(t), (1)

with a friction factor ζ. Chain connectivity is repre-
sented by the first term to the right, with K = 3kBT/b

2

the effective spring constant for Gaussian coils [1]. The
noise terms on each bead fn(t) are independent and
delta-correlated, with zero mean and variance given by
〈fnα(t)fmβ(t

′)〉 = 2ζkBTδαβδmnδ(t− t′), where α and β
are coordinate indices.
Eq. (1) can be solved by introducing Rouse modes

Xp(t) ≡ 1
N

∑N
n=1 e

−i2πpn
Rn(t) [1]. The phase factor

2π differs from that for linear chains because of the
periodic boundary condition applicable to bead indices.
The mode amplitudes Xp(t) can be explicitly solved for
any initial Xp(0). The bead positions Rn(t) and MSD
〈

∆Rn(t)
2
〉

≡
〈

(Rn(t)−Rn(0))
2
〉

follow from the inverse

Fourier transform of Xp(t). Averaging
〈

∆Rn(t)
2
〉

with
respect to index n gives

〈

∆R
2
〉

= 12

N/2
∑

p=1

kBT

Kp

(

1− e−t/τp
)

, (2)

where Kp is defined by 4π2p2K/N . In Eq. (2) we have
combined the contributions from conjugate modes with
indices p and N − p, and omitted the self-diffusion term

p = 0. To arrive at the final results, we have used the
thermalized initial amplitudes

〈

Xp,α(0)
2
〉

= kBT/Kp.
Contributions from all the modes damp exponentially,
with time constants τp = ζp/Kp = N2ζ/(4π2p2K) that
are smaller than linear chains by a factor of 4.
Changing summation in Eq. (2) to an integral, we can

show that bead MSD in regime I grows as t1/2. Alterna-
tively, we can argue that when one bead diffuses a dis-

tance
〈

∆R
2
〉1/2

, it is accompanied by the displacement

of
〈

∆R
2
〉

/b2 neighboring beads, giving rise to a time–

dependent diffusion constant Deff ≃ kBT
(〈∆R2〉/b2)ζ . Equat-

ing
〈

∆R
2
〉

withDeff t leads to the same t1/2 scaling. This
scaling persists until time τe, at which the MSD reaches
the tube diameter, when we have

〈

∆R
2
〉

≃ a2 = Neb
2

and τe = N2
e ζ/(π

2K).
After τe, the tube confinement is effective. Beads

are then displaced along the tube contour by curvilinear
Rouse motion. We denote the bead displacement along
tube contour by z, and nondimensionalize it by defining
s ≡ zNe/a. As a bead translates in s along the tube con-
tour, it moves in space as well. Because the tube contour
is a random walk, the bead MSD in space is related to the

variance in s for δs ≫ Ne by
〈

∆R
2
〉

=
〈

δs2
〉1/2

a2/Ne.
At scaling level, three characteristic behaviors can be

identified for MSD (Fig. 3). In regime II, bead motion
is dominated by contour length fluctuations along the
tube contour. The spreading

〈

δs2
〉

scales with t1/2 ac-

cording to the Rouse model, so MSD scales with t1/4.
In regime III, the curvilinear Rouse modes have relaxed,
and bead motion is dominated by reptation. The spread-
ing

〈

δs2
〉

increases linearly with time, so MSD scales

with t1/2. The onset time of this regime is the longest
Rouse time τR ≡ τ1. In regime IV, all beads have thor-
oughly explored the circular tube, so the MSD satu-
rates. This happens for times beyond the diffusion time
τd ≡ L2/(Nζ)−1 ∝ N3 needed for beads to traverse the
tube.
Remarkably, a closed-form expression for bead MSD

can be derived, by combining the Rouse model result for
the curvilinear spreading

〈

δs(t)2
〉

, with the random walk
statistics of the tube itself. From the Rouse solution to
the 1D version of Eq. (1), we obtain

〈

δs(t)2
〉

=
4Ne

b2

N/2
∑

p=1

kBT

Kp

(

1− e−t/τp
)

+
2NekBT

b2Nζ
t. (3)

Here the linear term is the reptation contribution.
To relate Eq. (3) to the real space displacementRs and

calculate the thermal average, we expand Rs in Rouse

modes as Rs =
∑

′Z/2
p=−Z/2 Ype

i2πpδs/N . The bead MSD is

then given by

〈

∆R
2
s

〉

= 12

Z/2
∑

p=1

kBT

Kp
(1− 〈cos (2πpδs(t)/N)〉) . (4)
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FIG. 4: Tube contours (colored red to blue by bead index)
from isoconfigurational average over time τa = 2×104 τ . Dif-
ferent contours correspond to elapsed times τe, τR and τd.

The average 〈cos (2πpδs(t)/N)〉 is evaluated by not-
ing that δs(t) is a Gaussian random variable with zero
mean and variance given by Eq. (3). This leads to
〈cos (2πpδs/N)〉 = exp(−2π2〈δs(t)2〉p2/N2). The MSD
grows with time, to a maximum value at long times

12
∑Z/2

p=1
kBT
Kp

. Setting Z =∞ gives the asymptotic limit

Nb2/6 = 2R2
g, an expected result since, at infinite time

delay, the bead MSD can be equivalently written as
N−2

∑N
m,n=1〈(Rn −Rm)2〉 = 2R2

g.
The above results can be merged with the uncon-

strained motion at early times t < τe described by
Eq. (2), by assuming that modes with 1 ≤ p ≤ Z/2
and Z/2 < p ≤ N/2 evolve by 1d curvilinear Rouse and
3D Rouse dynamics respectively (a smoother crossover
function may be used in practice to improve the fitting
quality). Thus we write

〈

∆R
2
〉

R2
g

=
12

π2

N/2
∑

p=⌊Z/2⌋+1

1− e−4p2(t/τe)/Z
2

p2

+
12

π2

p=⌊Z/2⌋
∑

p=1

1− e−2π2p2〈δs(t)2〉/N2

p2
. (5)

This closed–form expression contains only two parame-
ters, the entanglement length Ne and relaxation time τe,
which can be determined by comparison to simulation
results. Note that unlike linear chains, for rings all beads
are statistically equivalent, so we measure and compute
the MSD averaged over all beads.
The theoretical curves in Fig. 2 are computed using

Eq. (5), with parameter values Ne = 73 and τe = 2800 τ
optimized visually. This value ofNe is consistent with our
results based on purely topological analysis [32, 37]. The

value of τe implies a friction factor ζ = 7.9 (m/τ), calcu-
lated from ζ = 3π2kBTτe/(N

2
e b

2) [1]. We separately de-
termined molecular diffusivity D in melts of linear chains
for chain lengths N = 16, 24, 32, 48 and 64, and ob-
tained the friction factors ζ(N) ≡ kBT/(ND). By plot-
ting against 1/N and extrapolating to N = ∞ (inset of
Fig. 2), we obtain ζ(∞) = 7.4 (m/τ), reassuringly close
to our value from MSD for rings.

From the MSD data for N = 1600, we can read off
Rouse and reptation times τR ∼ 106 τ and τd ∼ 108 τ .
These values are compatible with the time evolution of
tube contour, visualized using ICE (isoconfigurational
ensemble) average [38]. For ICE, we average over 100
short MD trajectories, all starting from the same ini-
tial configuration, but with different initial thermal ve-
locities. Fig. 4 show ICE tube contours for N = 1600,
colored by bead index, for different time delays from a
given starting configuration. At t = τe, the tube has
barely moved; at t = τR, the contour has wiggled a bit;
by t = τd, the contour still mostly retraces its old path,
but has reptated far along its own length — as expected
from the tube model and the regimes of Fig. 3. The τd
values for N = 800 and 400 are close to 107 τ and 106 τ ,
in agreement with the expected N3 scaling.
In summary, the bead mean-square displacement for

randomly entangled ring polymers can be quantitatively
described by the tube model, with only the entangle-
ment molecular weight Ne and bead friction factor ζ
as fitting parameters. Our closed-form expression de-
scribes the MSD over eight orders of magnitude in time
and two orders in length, for rings of 5, 10 and 20 en-
tanglement strands, with the same values Ne = 73 and
ζ = 7.9 (m/τ). These values are consistent with our topo-
logical analysis of entanglement states [32, 37] and anal-
ysis of molecular diffusivity in linear polymer melts.
The tube model fits the data well under the naive as-

sumption that the same friction factor applies to repta-
tion, curvilinear Rouse motion and local Rouse motion.
In response to the suggested possibility of using different
values in different regimes [26, 27], we suggest the oppo-
site. The close quantitative agreement with MSD data
does not resolve the controversy noted in recent simu-
lations of strong chain stretching during startup shear
[22, 24, 39], but does lend strong support to the tube
theory (see also [40]).

The closed–form expression for bead MSD, Eq. (5),
suggests an approach to determine Ne and ζ for real poly-
mers, from fitting to atomistic simulations. To obtain Ne

and ζ, the simulation only needs to extend well beyond
τe, so that the first crossover from 1/2 to 1/4 can be
observed, i.e., so the chain can “feel” the tube. Our ex-
pression for rings describes this crossover well. Given
the modest system size and computation costs required,
it should be possible to apply our methods to atomistic
MD simulations of topologically equilibrated rings. Mul-
tiple systems with values of Z ranging from 5 to 10 may
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suffice for such a purpose.
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