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We report on the engineering of a non-dispersive (flat) energy band in a geometrically frustrated
lattice of micro-pillar optical cavities. By taking advantage of the non-hermitian nature of our
system, we achieve bosonic condensation of exciton-polaritons into the flat band. Due to the infinite
effective mass in such band, the condensate is highly sensitive to disorder and fragments into localized
modes reflecting the elementary eigenstates produced by geometric frustration. This realization
offers a novel approach to studying coherent phases of light and matter under the controlled interplay
of frustration, interactions and dissipation.

Flat energy bands occur in a variety of condensed mat-
ter systems, from the Landau levels of an electron gas, edge
states of graphene [1], Aharonov-Bohm cages in metal net-
works [2], frustrated magnets [3] to unconventional super-
conductors [4]. The common feature of these materials is
the appearance of a divergence in the density of states at
the energy of the flat band, which prevents straightforward
ordering. Consequently, any small perturbation may have a
dramatic effect on the system. For example, interactions of-
ten lead to strongly correlated and exotic phases of matter as
observed in the fractional quantum Hall effect [5], spin liquids
[6] or spin ices [7, 8]. Another important class of emerging
phenomena in flat band systems originates from the effects of
disorder, which are enhanced by the very large mass [9] and
can significantly deviate from conventional Anderson local-
ization. Examples include the inverse Anderson transition
(delocalization transition) [10], localization with unconven-
tional critical exponents and multi-fractal behavior [11], and
mobility edges with algebraic singularities [12].

The observation of these phenomena in solid-state systems
is often complicated by extrinsic material-specific pertur-
bations and the impracticality of engineering suitable lat-
tice geometries. Artificial lattices, recently implemented
in a number of physical systems, allow simulating this flat
band physics in a controllable manner. Pioneering works
in photonic systems [13–19] and cold atom gases [20–22]
highlighted the key role played by geometric frustration [15]
and evidenced characteristic features such as the absence of
wavepacket diffraction in a flat band [17–19]. But despite
many predictions [23–26] the specific role played by inter-
actions or disorder has not been experimentally addressed
in these artificial lattices so far. Also, steady-state bosonic
condensation has not been realized in a flat band, and the
question of the experimental properties of such condensate
remains open. In the case of ultracold atomic systems such
study remains delicate as flat bands usually appear at ener-
gies far above the ground state [20, 27, 28]. Investigation of
flat band condensation thus require challenging experimental
techniques to implement complex-valued tunneling constants
[21] or the coherent transfer of the atomic condensate into
an excited state [22].
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FIG. 1. a, Scanning electron micrograph of a 1D Lieb (or Stub)
lattice of coupled micropillars etched out of a cavity. The close
up shows schematically the pillars structure, with two distributed
Bragg reflectors (DBR) forming the cavity, and quantum wells
(QW) inserted at antinodes of the optical field. b, Geometric
structure of the lattice: it contains three types of pillars (A,B,C)
linked by couplings t1, t2 to nearest neighbors and t′ to next-
nearest neighbors. An example of plaquette-state (see text) is
highlighted in grey. c, Band structure calculated in the tight-
binding model with t′ = 0, at zero and finite spectral detuning
between A and C sites (solid and dotted lines, respectively). d,
Experimental real space emission at the flat band energy (condi-
tions of Fig. 2b). e, Calculated density profile of a typical flat
band mode (only one unit cell is shown).

In the present work, we use exciton-polaritons to investi-
gate bosonic condensation in a flat band. These quasiparti-
cles arise from the strong coupling between excitons confined
in quantum wells and photons confined in a semiconductor
microcavity [29]. Their mixed light-matter nature allows
efficient band structure engineering through their photonic
component [30], while providing scattering channels and non-
linearities through their excitonic component [31]. These as-
sets have allowed studying polaritons in staggered [32, 33],
squared [34], honeycomb [16] and Kagome lattices [14]. In
addition, their dissipative nature makes them an archetypal
non-hermitian system [35–37] featuring novel dynamical uni-
versality classes [38]. In this Letter, we engineer geometric
frustration by patterning a cavity into a 1D Lieb lattice (also
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known as Stub lattice) [39] of optical micro-pillars. Photolu-
minescence at low excitation power directly reveals the pres-
ence of a flat energy band. At higher excitation power, we
demonstrate the ability to trigger bosonic condensation of
polaritons in the flat band. Combined interferometric and
spectral measurements reveal that condensation occurs on
highly localized modes, reflecting the elementary eigenstates
produced by geometric frustration. These localized modes
arise from disorder in the sample, to which flat band states
are extremely sensitive due to their infinite effective mass.

Our 1D Lieb lattice of coupled micro-pillars [Fig. 1a] is
obtained by processing a planar microcavity (of nominal Q-
factor 70000) grown by molecular beam epitaxy. The cavity
consists of a λ/2 Ga0.05Al0.95As layer surrounded by two
Ga0.2Al0.8As/Ga0.05Al0.95As Bragg mirrors with 28 and 40
pairs in the top/bottom mirrors, respectively. Twelve GaAs
quantum wells of width 7 nm are inserted in the structure,
resulting in a 15 meV Rabi splitting. Micropillars (see close-
up in Fig. 1a) are patterned by dry etching down to the
GaAs substrate. The diameter of each pillar is 3 µm, and the
distance between two adjacent pillars is 2.4 µm, so that they
spatially overlap, allowing for the tunneling of polaritons [16,
30].

The unit cell of the 1D Lieb lattice (Fig. 1b) contains
three sites (A,B,C) linked by a coupling constant t1 between
A and B, and t2 between B and C. In general, this lattice
exhibits three dispersive bands, as shown in the tight-binding
calculation of Fig. 1c (dashed lines). In the particular case of
sites A and C having equal energies, the middle band is flat
and gapped from the two remaining dispersive bands (solid
lines). The existence of the flat band is independent of the
energy of pillars B and of the couplings t1, t2.

To probe the polariton properties in this lattice, we excite
it non-resonantly with a continuous-wave monomode laser at
740 nm. The spot is elliptical with 2 µm-width and 60 µm-
length (intensity FWHM), corresponding to 12 unit cells of
the lattice. Experiments are performed at 6K and −8 meV
cavity-exciton detuning. The emission of the sample is col-
lected with a 0.5 numerical aperture objective and focused
on the entrance slit of a spectrometer coupled to a CCD cam-
era. Imaging of the sample surface (resp. the Fourier plane)
allows for studying the polariton modes in real (resp. recip-
rocal) space. We resolve the emission in polarization, and
consider either the polarization parallel (TM) or perpendic-
ular (TE) to the lattice (Fig. 1b).

Under low pumping power, incoherent relaxation of polari-
tons results in the population of all energy bands, allowing a
direct visualization of the band structure. The correspond-
ing far field emission is shown in Figs. 2b and 2h for emitted
light polarized TM and TE, respectively. In TM polarization
a gapped flat band is clearly observed, while in TE polar-
ization the middle band is dispersive and crosses the upper
band. This difference arises from polarization-dependent
boundary conditions for the photonic modes of the pillars,
which induce a spectral detuning between pillars A and C for
TE polarization. Both band structures are well reproduced
(black lines in Figs. 2b,h) by a tight-binding Hamiltonian
including next-to-nearest neighbor couplings t′: HLieb =∑
l,j El |lj〉 〈lj | −

∑
j(t1 |Aj〉 〈Bj |+ t2 |Bj〉 〈Cj |+ t2 |Cj〉 〈Bj+1|)

−
∑
j t
′(|Bj〉 〈Bj+1|+ |Cj〉 〈Cj+1|+ |Aj〉 〈Cj |+ |Cj〉 〈Aj+1|)+ h.c. ,
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FIG. 2. b,h, Energy-resolved far field emission of the struc-
ture at low excitation power, for polarization parallel (TM) and
perpendicular (TE) to the lattice. Black lines are fits using the
tight-binding Hamiltonian HLieb [see Eq. (1)]. When the pump
excites equally all type of pillars (a), condensation occurs in the
upper dispersive band and is TM polarized: b-d monitor the far
field emission when increasing the pump power from P = 0.05Pth

to P = 2Pth, where Pth is the threshold power (Pth ' 4 mW for
this condensation process). In d condensation is achieved at the
top of the upper dispersive band. e, Corresponding real space
image of the condensate. f, Calculated trajectory of the eigenval-
ues of Eq. (1) in the complex plane, as the power is increased
(see arrows). g, When the pump is centered on the line of pil-
lars A, condensation occurs in the flat band and is TE polarized:
h-j monitor the far field emission with increasing pump power
(Pth ' 5 mW for this condensation process). k, Corresponding
real space image of the flat band condensate. l, Same calculation
as f but for the pump configuration g, reproducing condensation
in the flat band.

where |lj〉 denotes the wavefunction (of energy El) of pillar
l = A,B,C in the jth unit cell.

The real space pattern corresponding to the flat band of
Fig. 2b (i.e. below the condensation threshold) can be re-
constructed by spectrally filtering the image. The result is
shown in Fig. 1d, and compared to the tight-binding pre-
diction of Fig. 1e. A characteristic structure is observed,
with sites B being dark, i.e., containing no particles. This
is a direct signature of geometric frustration: a destructive
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FIG. 3. a-c, Interferograms obtained by superposing two images of the flat band condensate (at P = 2Pth) shifted by ∆x = 0, 2 and

4 unit cells. d-f, Same experiment realized with the upper dispersive band condensate. g, First-order spatial coherence g(1) deduced
from the visibility of the interferograms, as a function of ∆x. h, Solid lines: Half participation ratio HPR calculated from HLieb as a
function of (diagonal) disorder strength, in the flat band and at the top (k = 0) of the upper dispersive band. Shaded aeras denote the
standard deviation, and the vertical line indicates the estimated disorder strength in our sample. Dots: HPR in the flat band calculated
from the full Hamiltonian H(P ) [Eq. (1)].

interference between sites A and C cancels the net flow of
particles to sites B and prevents propagation of flat band
states [27, 39].

We now consider polariton condensation [40] in this 1D
Lieb lattice. Upon increasing the pump power, condensation
is triggered when the relaxation towards a given mode be-
comes faster than its decay [41]. The mode becomes macro-
scopically occupied and spontaneous coherence sets in. This
process can be understood by analyzing the non-Hermitian
operator derived from the generalized Gross-Pitaevskii equa-
tion [42]:

H(P ) = HLieb+
∑

l=A,B,C
j=1...N

[
gR
γR
fljP + i

2

(
R
γR
fljP − γl

)]
|lj〉 〈lj | (1)

The second part in Eq. (1) is complex-valued and describes
the effect of pump and dissipation which adds to the lattice
Hamiltonian HLieb that is fixed by the fabricated structure.
The first term accounts for the repulsive interaction between
polaritons and reservoir excitons, with gR being the corre-
sponding interaction constant, γR and R the exciton decay
and relaxation rates, respectively. This repulsive interac-
tion produces a blueshift of the pillar energies, proportional
to the pump power P ; flj denotes the fraction of the total
pump power on each pillar. The second term describes the
dissipation rate of each pillar: it is the sum of the passive
dissipation rate γl imposed by polariton decay, and a gain
term proportional to P .

The eigenvalues of H(P ) are complex-valued ωn = νn −
iγn/2 and describe the frequency and damping of the linear
fluctuations around the uncondensed state [35]. As the power
P is ramped up, all complex eigenvalues flow towards the real
axis from below (see Figs. 2f,l). The condensation threshold
for a given mode is reached when its eigenvalue ωn crosses the
real axis (net loss γn = 0), meaning that gain overcomes the
decay of polaritons. Whereas the polariton decay is fixed by
the parameters of our structure, the gain is proportional to
the spatial overlap with the pump and can thus be controlled
by tailoring the pump profile (described by flj) [35]. This
is indeed what we demonstrate in Fig. 2: in the 1D Lieb
lattice we can control condensation to occur either in the

upper dispersive band (left column) or in the flat band (right
column), by adjusting the pump spatial configuration.

We first pump the lattice in a symmetric manner, as
sketched in Fig. 2a: all types of micropillars (A,B,C) are
pumped by the same amount (fAj =fBj =fCj). Figs. 2b-
d monitor the momentum space emission in TM polariza-
tion, when increasing the pump power from P = 0.05Pth

to P = 2Pth, where Pth = 4 mW is the threshold power
(corresponding data for TE polarization are shown in the
Supplemental Material [43]). Polariton condensation even-
tually occurs in the upper dispersive band (Fig. 2d), with
the emission collapsing at the center of the Brillouin zones
(k = 0) [16] and showing narrow linewidth. This condensa-
tion process is well reproduced by calculating the trajectory
of the eigenvalues ofH(P ) in the complex plane (see Fig. 2f).
The parameters of HLieb are kept constant and the evolution
of the eigenvalues with pump power is completely driven by
the second part of Eq. (1). We observe that the k = 0 upper
band mode (marked in blue) indeed reaches the real axis first
for this pump configuration.

In the following, we show that asymmetric pumping of the
same structure allows triggering condensation into the flat
band. Compared to upper band modes, flat band modes
have larger amplitude on pillars A (Fig. 1d,e). Pumping fa-
vorably these pillars (fAj�fBj , fCj) thus enhances the gain
and lowers the condensation threshold of flat band modes,
as confirmed by the calculated spectrum in Fig. 2l. Using
such asymmetric pumping, pillars A develop an additional
blueshift with respect to pillars C, which destroys the flat
band in TM polarization [43]. Nevertheless, in TE polar-
ization this blueshift compensates the photonic detuning be-
tween pillars A and C so that a gapped flat band is formed,
as experimentally observed in Fig. 2i. Increasing the power
further triggers condensation in this flat band (Fig. 2j). The
emission in real space (Fig. 2k) shows dark pillars character-
istic of geometric frustration (as under condensation thresh-
old, see Fig. 1d), in clear contrast with the dispersive band
condensate (Fig. 2e).

A peculiarity of a flat band is that, due to its macroscopic
degeneracy, eigenstates of arbitrary lengths can be formed.
Among these, a set of maximally localized eigenmodes can be
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defined [27], which for the Lieb lattice extend over 3 pillars
only [39]. An example of such a plaquette-state is highlighted
in gray in Fig. 1b. Note that delocalized eigenstates can also
be obtained by linear superposition of different plaquette-
states. Thus, the question arises of which kind of state is
actually picked up for condensation in the flat band.

To answer this question, we use interferometric measure-
ments and high spectral resolution imaging. We first inves-
tigate the first-order spatial coherence g(1)(∆x) of the flat
band emission, by superposing two images shifted by ∆x
along the periodic direction, and extracting the averaged
visibility of the resulting interference fringes [40]. Figs. 3a-
c show the measured interferograms for increasing values
of ∆x: the visibility decays exponentially (Fig. 3g) with a
characteristic length of 1.6 ± 0.3 unit cells. This indicates
the presence of many independent condensates, localized on
1.6 unit cells on average, i.e. close to plaquette-states. To
confirm this picture we use high spectral resolution imag-
ing. Fig. 4a displays the energy-resolved emission of the flat
band condensate in real space, along the line of pillars A.
By repeating the measurement for the line of pillars B and
C [43], we color-code in Fig. 4b the emission energy mea-
sured on each pillar. It shows significant spectral variations
along the lattice, allowing to visualize the localized conden-
sates. A general measure of the localization of these conden-
sates is provided by the half participation ratio, defined as
HPR = (

∑
j |ψjC |2)2/(2

∑
j |ψjC |4), where ψjC is the wave-

function amplitude on site C of the jth unit cell. The HPR
quantifies the portion of the lattice where the wavefunction
differs markedly from zero, and coincides with the localiza-
tion length in the case of exponentially localized states [48].
In Fig. 4b, starting from the left, one successively identi-
fies flat band condensates with an HPR of ∼ 1.5, 1 and 2
unit cells. This confirms that flat band condensation is mul-
timode, occurring simultaneously on strongly localized and
independent modes.
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FIG. 4. a, Energy-resolved emission of the flat band conden-
sate in real space (see Fig. 2k) along the line of pillars A. We
colour-code in b the emission energy along the lattice: several lo-
calized modes are visible, emitting at distinct energies. c, Energy-
resolved emission of the upper dispersive band condensate in real
space (see Fig. 2e), along the line of pillars B and C. d, Corre-
sponding spatial map of the emission energy, showing monochro-
matic emission over the whole condensate.

Let us compare these observations to the situation where
condensation takes place in the upper dispersive band. Keep-
ing the very same location on the sample, Figs. 3d-f show
the corresponding interferograms obtained when the system
is pumped symmetrically (Fig. 2a). The deduced g(1) de-
cays much slower (Fig. 3g), revealing highly extended spa-
tial coherence. Consistently, the energy-resolved measure-
ments of Fig. 4c-d show that the emission is monochromatic
over the whole condensate within the experimental resolu-
tion (30 µeV): condensation here occurs on a single extended
mode, having an HPR > 4 unit cells.

This striking difference between both types of condensates
can be understood by taking system disorder into account.
A flat band is robust to non-diagonal disorder (i.e. on the
tunnel couplings) [19], but any small amount of diagonal dis-
order (on the on-site energies) breaks the macroscopic de-
generacy: extended eigenstates cannot be formed anymore,
resulting in a strong localization effect [9, 11, 25]. This can
be seen by calculating the eigenstates of the lattice HLieb in
presence of diagonal disorder. We plot in Fig. 3h the cor-
responding half participation ratio HPR. In the flat band
(red line) the HPR is very small and essentially independent
of the disorder strength, illustrating the non-perturbative ef-
fect of disorder. Its value HPR ' 1.8±1 unit cells reproduces
well the experimental HPR. By contrast, the HPR in the up-
per dispersive band (black line) decays as a power law with
increasing disorder, and is several times larger than in the
flat band for weak disorder. We calculate HPR = 8.5± 4 for
the estimated disorder strength of our sample (30 µeV, ver-
tical line in Fig. 3h), which is compatible with the extended
condensate experimentally observed.

To investigate the possible influence of pump and dissi-
pation on the strong localization observed in the flat band,
we also calculate the HPR using the complete Hamiltonian
H(P ) [Eq. (1)]. In absence of disorder, we find that the HPR
in the flat band is bounded only by the finite size of the pump
spot [49] (as is the case for the upper band), showing that
pump and dissipation alone cannot lead to the observed local-
ization. When including disorder, the HPR (red dots in Fig.
3h) is close to the calculation based on HLieb only. This al-
lows concluding that pump and dissipation play a minor role
in the observed localization effect. We note that polariton-
polariton interactions (cubic nonlinearity) could also lead to
localization in the flat band [23–25], but in the current exper-
iment this nonlinearity is of order ∼ 0.1 µeV and thus much
smaller than disorder (30 µeV) [43]. We thus neglected this
term in the analysis.

Finally, the experimental reproducibility of our results has
been verified on ten different lattice realizations. Each time
the disorder landscape, which allows the formation of an ex-
tended monomode condensate in the upper band, leads to a
fragmentation of the flat band condensate into highly local-
ized modes. To conclude, our experiments demonstrate the
extreme sensitivity of a flat band condensate to diagonal dis-
order, due to the infinite effective mass in such band. Bosonic
condensation in a flat energy band opens up novel perspec-
tives in the simulation of mesoscopic and condensed matter
phenomena. In particular, access to many-body flat band
physics [27, 50, 51] could be reached using resonant pump-
ing, where the interaction energy is set by the spectral de-
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tuning between the pump and the considered quantum state
[52]. Furthermore, spin-orbit coupling has recently been en-
gineered in polaritonic systems [53]. This should allow to
further explore the delicate interplay of frustration, interac-
tions and topology [54, 55] in macroscopic quantum states.
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