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We study stress time series caused by plastic avalanches in athermally sheared disordered mate-
rials. Using particle-based simulations and a mesoscopic elasto-plastic model, we analyze size and
shear-rate dependence of the stress-drop durations and size distributions together with their aver-
age temporal shape. We find critical exponents different from mean-field predictions, and a clear
asymmetry for individual avalanches. We probe scaling relations for the rate dependency of the
dynamics and we report a crossover towards mean-field results for strong driving.

PACS numbers: 62.20.F-, 45.70.Ht, 63.50.Lm, 64.60.av

Many materials respond to slow driving with strongly
intermittent dynamics. Examples include Barkhausen
noise in ferromagnets [1–3], stick-slip motion in earth-
quakes [4], serration dynamics in plasticity of solids [5],
and avalanche dynamics in crack propagation [6, 7],
driven foams [8] and domain wall motion [9].

As in equilibrium critical phenomena, global quantities
linked to such bursting collective events are usually power
law distributed and allow for the introduction of scaling
functions. In the slow driving limit, the onset of motion
can be interpreted as an out-of-equilibrium phase transi-
tion, suggesting the existence of families of systems that
display similar avalanche statistics. To better identify
this universality classes, both experimental [10–17] and
theoretical [13, 18–21] works have discussed the avalanche
“shapes”, going beyond the study of scaling exponents.

In deformation experiments of amorphous systems,
such as grains, foams or metallic glasses, avalanche dy-
namics are typically evidenced in the time series of the
deviatoric component of the stress tensor. In the limit
of vanishing deformation rate we approach the so-called
“yielding transition”. The question whether yielding can
be characterized as a continuous dynamical phase tran-
sition, belonging to a specific universality class, is still
under debate. The analysis of avalanche statistics close
to yielding has therefore a particular relevance.

In this letter, we study the emerging yielding dy-
namics in a simple shear geometry with imposed driv-
ing rate. Our focus lies on the shear-rate dependence
of the avalanche statistics and thus complement recent
quasi-static studies [22–25], To address the low shear-rate
regime we use a coarse-graining approach, proven to yield
qualitative and quantitative relevant predictions [26–31],
and compare the low shear-rate results of our meso-scale
model with quasistatic particle-based simulations.

Molecular dynamics (MD) – We consider a mixture of A
and B particles interacting via a Lennard-Jones poten-
tial: VAB(r) = 4εAB[(σAB/r)

12 − (σAB/r)
6] with r being the

distance between two particles. Units of energy, length
and mass are defined by εAA, σAA and mA; the unit of
time is given by τ0 = σAA

√
(mA/εAA). The potential is

truncated at Rc = 2.5 and a force smoothing is applied
between an inner cut-off Rin = 2.2 and Rc. The two
species of particles have equal mass m, but different in-
teraction parameters to prevent crystallization. We set
εAA = 1.0, εAB = 1.5, εBB = 0.5, σAA = 1.0, σAB = 0.8
and σBB = 0.88 and m = 1. The ratio of particles of
species A and B is chosen NA/NB = 13/7 and 8/2 for 2d
and 3d systems, respectively. Glassy states are obtained
(with LAMMPS [32]) by quenching to zero temperature
at constant volume systems equilibrated at T = 1. An
athermal system is achieved by applying to each particle
a viscous drag force Fdrag = −Γv, where v is the par-
ticle peculiar velocity. We condition the dynamics to be
strongly overdamped [22, 33] (Γ = 1). Avalanche statis-
tics are obtained following a quasistatic protocol [22, 23].
We impose simple shear at rate γ̇ = 10−6 by deforming
the box dimensions and remapping the particle positions.
Following [22], the shear-rate γ̇ is set to zero when a steep
increase in kinetic energy occurs (onset of plastic defor-
mation) and only restored when the kinetic energy drops
below a threshold.
Elasto-plastic (EP) model– We coarse-grain an amor-
phous medium onto a mesoscopic lattice: each node rep-
resents a block of material holding exactly one shear
transformation [33–36], for which we assume the same
geometry as the globally applied simple shear. To each
site i we associate a local scalar shear stress σi and a
state variable ni, indicating whether the site plastically
deforms (n = 1) or not (n = 0). Local stresses evolve
with the overdamped dynamics:

∂tσi = µγ̇ + µ
∑
j

Gij∂tγ
pl
j (1)

with µ = 1 the elastic modulus, γ̇ the externally ap-
plied shear-rate, τ = 1 a mechanical relaxation time and
∂tγ

pl
j =

njσj

µτ the strain rate produced by a plastic re-
arrangement at site j. Gij denotes the discretized Es-
helby propagator [37], that obeys a quadrupolar symme-
try in the shear plane with a dipolar long-range character,
G(r, r′) = cos(4θrr′)/|r−r′|d. A site yields (ni = 0→ 1)
when its stress reaches a local threshold σi ≥ σyi , and re-
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FIG. 1. Stress-drop size distributions. Main panels show
rescaled distributions Ldf τPS vs. S/Ldf of the EP model
compared to MD quasistatic simulations (arbitrary shift ap-
plied for the comparison). Insets show not-scaled curves. (a)
3dEP model data for linear system-sizes L = 16 (green cir-
cles), 32 (orange squares), 64 (blue diamonds), 128 (plum
triangles) and shear-rate 10−4 (full symbols). For L = 32,
γ̇ = 10−3, 10−5 are also shown (light and dark orange open
squares). Gray scale triangles correspond to quasistatic 3dMD
with L = 40, 60, 80 (from light to dark). (b) 2dEP data
for linear system-sizes L = 256 (green circles), 512 (orange
squares), 1024 (blue diamonds) and 2048 (plum triangles)
at γ̇ = 10−5. Gray scale triangles correspond to quasistatic
2dMD with L = 80, 160, 320 (from light to dark).

covers its elastic state (ni = 1 → 0) when a prescribed
local deformation increment is attained after yielding,∫
|∂tσi/µ + ∂tγ

pl
i |dt ≥ γc. Each time a site yields a

new yield stress σyi is drawn from a distribution of mean
σ0. Model details and parameter choices can be found in
Ref.[38] and in the Supplemental Material [39].

Stress-drop statistics and shear-rate dependence– From
the stress-time series we individualize stress-drops, and
define an extensive quantity S proportional to the abso-
lute stress difference multiplied by the system volume.
We compare in Fig.1 the stress-drop distributions PS
in the limit of low γ̇ for the EP model with the qua-
sistatic MD results. In both two (2d) and three dimen-
sions (3d), apart from a plateau regime for small stress-
drops that depends on shear-rate, numerical integration
step and system size, we fit the data using a power-law
PS ∼ S−τf(S/Sc), with f an exponentially decaying cut-
off function [40] (exponent definitions in Table I). Notic-
ing that the distributions PS become independent of γ̇
in the zero shear-rate limit and in agreement with previ-
ous works [23, 25], we postulate a system size dependent
cut-off Sc ∼ Ldf , with df the fractal dimension of the
avalanches [23, 25, 41]. The comparison of these stress-
drop statistics with MD results reveals a fair agreement,
up to an arbitrary scaling factor related to the difference
in simulated length scales.

The fitted values of τ for the EP model, both in two
and three dimensions (τ2d ' 1.28, τ3d ' 1.25), com-
pare very well with our and earlier obtained MD re-
sults [22, 23], are compatible with previous lattice mod-
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FIG. 2. Shear-rate dependency of the dynamics for the 3dEP
model. (a) Log-log plot of ∆σ0 ≡ (σ − σc)/σ0 vs γ̇. Circles
correspond to the best estimation of σc/σ0 = 0.687; along-
side lines, to choices of 0.683 and 0.691 instead. Full and
dashed lines are power-law fits in selected ranges (extrapo-
lated for comparison). Inset: Crossover of 1/β as explained
in the text. (b) Steady-state distributions Px of the local
distances to threshold x ≡ σy − σ for different shear-rates
γ̇ ∈ {10−1.4, . . . , 10−5}. Inset: Stress-drop distributions for
γ̇ ∈ {10−1, . . . , 10−3}, rescaled and shifted as explained in
the text. Arrows indicate the sense of increasing shear-rate.

(c) Rescaled distributions of stress-drop duration γ̇−ατ
′
PT vs.

T γ̇α for γ̇ = 10−2, 10−3, 10−4, 10−5 (from light blue to dark
plum, left to right in inset), and system-sizes L = 64 (closed
symbols) and 128 (open symbols). The dashed line shows a
law PT ∼ T−1.44. Inset: Unscaled data. (d) Average size
S̄ for stress-drops of the same duration as a function of T γ̇α

for L = 64 and γ̇ = 10−2, 10−3, 10−4, 10−5. The dashed line
shows S̄ ∼ T 1.58. Inset: Unscaled data, shear-rate decreases
from left to right.

els [42], and lie within error bars of those provided by
FEM models [43]. Still, they disagree with what was
obtained with quasistatic protocols in cellular automa-
ton models [25] (especially in 3d where τ QS3d ' 1.43), and
they contrast even more with the usual mean-field pre-
diction [44] τ MF = 3/2 (see [45] for an alternative analy-
sis). The values obtained for df (d2df ' 0.9, d3df ' 1.3)
are compatible with quasistatic MD simulations, but
slightly smaller than those reported in automaton mod-
els [25]. They suggest a line geometry of the correlated
slip events [24, 46], with a modest but clear trend towards
a more compact structure in 3d.

Some main results concerning the finite driving rate are
summarized in Fig. 2 for the 3dEP model, similar results
are found for the 2d case (not shown). The consequences
of applying a finite shear-rate are twofold[47]:

(I) The first important observation is that with increas-
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ing driving rate the critical exponents tend towards the
mean-field predictions. The yielding exponent β for ex-
ample, defined through γ̇ ∝ (σ − σc)

β , can be derived
from the fits in Fig.2(a) rendering a non-trivial value
β ' 1.55 in the low shear-rate regime. For larger shear-
rates this value crosses over to β ∼ 2 predicted by the
Hebraud-Lequeux model [48]. By sliding a fixed size log-
arithmic window in γ̇ (comprising ∼12 points of the main
plot data set) and fitting within, we show the resulting
1/β as a function of the starting position of the window
in the inset of Fig. 2(a). Similarly we observe a crossover
of the exponents in the steady-state distribution Px of
the local stress excess [49, 50] xi ≡ σyi − σi, Fig.2(b).
Again in the limit of vanishing shear-rates we observe
the curves approaching a shape that initially grows as
Px ∼ xθ with a non-trivial exponent, as found in the qua-
sistatic case [25, 49], attributed to an anomalous random
walk process of the local stress with an absorbing bound-
ary condition at x = 0 [51]. However, as we increase
the shear-rate Px changes, eventually yielding θ ' 0.
The driving progressively dominates over the signed kicks
from elastic interactions, yielding a biased diffusion of the
x’s values. This ultimately produces a strictly positive
local stress evolution, resembling the x dynamics of the
depinning problem [25]. The inset of Fig.2(b) shows a
feature compatible with the shear-rate dependence of Px
and with the β crossover. For different shear-rates, we
plot kγ̇S

1.5PS vs. S, where kγ̇ is an arbitrary scaling co-
efficient to separate the curves and improve visualization.
We observe a range of low shear-rates where the slope of
the transformed distributions is almost unchanged and
fully consistent with Fig.1(a). Above a rate of deforma-
tion of about ∼ 0.015, curves progressively flatten, even-
tually becoming horizontal. Plotting S1.5PS , we show the
departure of PS from the MF expectation P MF

S ∝ S−1.5

as the critical point is approached. When investigating
the distribution of stress fluctuations ηi =

∑
j 6=iGij

njσj

τ
on each site, we find consistently a change from a peaked
distribution with fat tails towards Gaussian-like distribu-
tions as we increase the shear-rate. We infer from this,
that the strong correlations at vanishing shear-rates (rea-
son for the non-trivial criticality) become negligible for
stronger driving, so that the exponents end up being well
described by mean-field assumptions.

(II) The second consequence of a finite driving rate is
that the critical scaling regime shows not only finite size,
but also finite shear-rate effects [46, 52]. When imposing
a finite deformation rate, each stress-drop is character-
ized not only by its magnitude or size S, but also by its
duration T . For each stress-drop we define a given dura-
tion T , as the time elapsed between the beginning and the
end of the drop. In Fig.2(c) we present the distributions
of durations PT for a fixed system size and different shear-
rates. In the probed shear-rate regime we find the depen-
dence on L to be negligible, thus PT (T, L, γ̇) ≡ PT (T, γ̇).
The main panel shows rescaled curves assuming the func-
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FIG. 3. Stress-drop shape properties for a 3dEP model : (a)

Rescaled stress-drop shape ṼT (t) = VT (t)/maxt(VT (t)) av-
eraged over stress-drops of duration T ± ε, as a function of
rescaled time t̃ = t/T . From left to right, we show curves at
increasing T . Inset: Bordered squares represent fitted values
of the asymmetry parameter ag for different choices of (γ̇, L).
Color code depicts the fit ag = 10−0.42T−0.43γ̇−0.37L−1.25 for
T = 0.5. (b) Amplitude B of the stress-drops vs. T , for
L = 32 and γ̇ = 10−4, as obtained from the fits. The inset
shows corresponding as(T ) and ag(T ) (see text).

tional dependence PT ∼ T−τ
′
g(T γ̇α), with g an expo-

nentially decaying function. We obtain for the 3d case,
τ ′3d = 1.44 and α3d = 0.3. Naturally, we expect the scal-
ing of PT to be dominated by a growing length scale ξ in
the critical limit, where the relations T ∼ ξz and S ∼ ξdf
hold. Therefore, we expect a scaling relation S ∼ T δ

with δ = df /z, that we observe over a range of shear-
rates, yielding the exponent δ3d ∼ 1.58 (see Fig.2(d)), in
contrast with the mean-field δMF = 2. More generally,
we observe empirically a power-law scaling of S with T ,
γ̇ and L. Actually, extending the dependencies of the
cut-off values in size, Ldf , and duration, γ̇−α, the mean
S at each T should follow S̄(T, L, γ̇) = C(L, γ̇)T δ with
C(L, γ̇) ∼ Ldf γ̇αδ. This relation is fairly verified for the
dependence on γ̇, illustrated in Fig.2(d). A rescaling of
the size dependence leads to an exponent larger by 15%
than df estimated from PS .

Stress-drop shapes– We address now the analysis of the
functional form of the stress-drops, i.e., the time evolu-
tion of the stress-drop velocity [15–17, 44]. In Fig.3(a)
we show rescaled stress-drop velocities VT (stress-drop
shapes) for a 3d system, averaged over drops of the
same duration T within the power-law scaling regime of
Fig.2(d). We observe that drops of short duration show
a noticable asymmetric shape, with faster velocities at
earlier times. As duration increases, the shape becomes
gradually more symmetric. To analyze this asymmetry
of stress-drop shapes for different durations, system sizes
and applied shear-rates, we fit them with a formula pro-
posed in Ref.[16] VT (t̃) ∝ B(t̃(1− t̃))c(1−as(t̃−0.5)) (see
also [15, 53]), with B the amplitude of the shape and
as a parameter quantifying the deviation from a sym-
metric inverted parabola. We confirm the expected rela-
tion c = δ − 1 (recall S ∝ T δ and compare Fig.3(b)and
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Fig.2(d)). In our range of parameters c is almost in-
dependent of L and γ̇. More relevant for our analysis
is the behavior of the fitting parameter as (see Fig.3(b)
inset), that shows clearly the crossover from nearly sym-
metric to asymmetric shapes as we focus on shorter du-
rations T . To avoid a fit with various parameters, we use
an alternative, purely geometrical measurement of the
asymmetry that is relevant even beyond scaling regime,

ag =
∫ 1

0
|VT (t̃)−VT (1−t̃)|
VT (t̃)+VT (1−t̃) dt̃. When computing ag(T ) for

different shear-rates at fixed T and L, ag increases as γ̇
decreases; whereas for fixed T and γ̇, ag decreases as L
increases (see inset of Fig.3(a)). In the quasistatic limit,
where just one independent avalanche occurs at a time
we expect asymmetric stress-drop shapes characterizing
individual avalanches. When we increase the driving rate
at fixed system size or, equivalently increase the system
size at a fixed rate, we expect stress-drops to result from
many independent avalanches, since the density of plas-
tic regions is determined and increased by the driving
strength [46]. Here, the resulting stress-drop shape draws
closer to the mean-field symmetric shape.

Conclusions– We studied with a mesoscopic model the
avalanche statistics close to the yielding transition, ver-
ifying the relevance of our approach by comparing with
particle-based quasistatic simulations. In Table I we
summarize the critical exponents obtained for 2d and 3d.
Our results clearly reinforce the idea of a non-trivial uni-
versality class for the yielding transition, in agreement
with earlier findings [23, 25, 42]. Our estimated expo-
nents, confirm within error bars the scaling relations pro-
posed by Lin et al. [25]. We also note that our values of
τ and τ ′ are indistinguishable from the exponents ex-
pected for the 1d long-range (1/r2) depinning universal-
ity class [6, 7]. Although the loading path dependence of
the critical exponents remains an open issue, this is an
interesting accordance and points towards the role played
by the avalanche slip-line geometry.

In the regime of larger shear-rates we find that sev-
eral exponents of the stress-drop statistics draw closer
to mean-field predictions. The rise of an increasing num-
ber of independent regions with yielding activity (parallel
occurring avalanches) justifies the crossover to trivially
random statistics. In particular our data reveals a yield-
ing exponent approaching the prediction of the Hébraud-
Lequeux model [48, 54, 55]. Further the finite shear-rate
protocol allows for the introduction of an additional ex-
ponent α that should enter the scaling relations, given
Tc ∼ γ̇−α. If we assume a usual scaling scenario, we ex-
pect a diverging length scale depending on the distance to
the yielding point ξ ∼ (σ − σc)−ν , such that ξ ∼ γ̇−ν/β ,
since γ̇ ∼ (σ − σc)β . Then Tc ∼ ξz yields directly the
scaling relation α = zν/β. We have not measured ν, but
assuming ν = 1/(d−df ) [25] to be valid we get α2d = 0.34
and α3d = 0.31, close to our estimated values.

Within the scaling regime for T we observe both asym-

Expression This work (2d | 3d) lr -depinning 1d MF

β γ̇ ∼ (∆σ)β 1.54(2) 1.55(2) 0.625(5) [56] 2 [48]
τ PS ∼ S−τ 1.28(5) 1.25(5) 1.25(5) [6, 7] 1.5 [44]
df Sc ∼ Ldf 0.90(7) 1.3(1) ∼ 1.38 [56] —

τ ′ PT ∼ T−τ
′

1.41(4) 1.44(4) ∼ 1.43 [6] 2 [44]
α Tc ∼ γ̇−α 0.38(4) 0.30(4) — —
z T ∼ `z ∼ 0.57 ∼ 0.82 0.77(1) [56] —
δ S ∼ T δ 1.58(7) 1.58(5) ∼ 1.7 [6] 2 [44]
θ Px ∼ xθ 0.52(3) 0.37(5) 0 1 [49]

TABLE I. Measured exponents for the avalanche statistics.

metric and symmetric stress-drop shapes depending on
system size, shear-rate and duration. This is why we
propose to distinguish between individual avalanches (re-
sulting from correlated plastic events) and stress-drop
shapes (resulting from many independently occurring
avalanches).

The combined study of avalanche size and duration
distributions and avalanche shapes has played an essen-
tial role in our understanding of the universal aspects of
crackling noise and depinning dynamics. With this work,
we provide a first numerical prediction of similar quan-
tities in the case of the yielding transition, with a clear
indication of a complex non mean-field behavior. We
hope this work will stimulate and provide a benchmark
for future experimental studies on systems undergoing a
continuous yielding transition, for which detailed data on
noise statistics is presently very scarce.
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[36] C. E. Maloney and A. Lemâıtre, Phys. Rev. E 74, 016118
(2006).

[37] J. D. Eshelby, Proceedings of the Royal Society of Lon-
don A: Mathematical, Physical and Engineering Sciences
241, 376 (1957).

[38] A. Nicolas, K. Martens, and J. L. Barrat, Epl 107, 6
(2014).

[39] See Supplemental Material [url], which includes Refs.[57–
64].

[40] R. Planet, S. Santucci, and J. Ort́ın, Phys. Rev. Lett.
105, 029402 (2010).

[41] N. P. Bailey, J. Schiøtz, A. Lemâıtre, and K. W. Jacob-
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