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Coupled length and time scales determine the dynamic behavior of polymers and underlie their
unique viscoelastic properties. To resolve the long-time dynamics it is imperative to determine
which time and length scales must be correctly modeled. Here we probe the degree of coarse
graining required to simultaneously retain significant atomistic details and access large length and
time scales. The degree of coarse graining in turn sets the minimum length scale instrumental
in defining polymer properties and dynamics. Using linear polyethylene as a model system, we
probe how coarse graining scale affects the measured dynamics. Iterative Boltzmann inversion is
used to derive coarse-grained potentials with 2-6 methylene groups per coarse-grained bead from a
fully atomistic melt simulation. We show that atomistic detail is critical to capturing large scale
dynamics. Using these models we simulate polyethylene melts for times over 500 µs to study the
viscoelastic properties of well-entangled polymer chains.

Polymer properties depend on a wide range of cou-
pled length and time scales, with unique viscoelastic
properties stemming from interactions at the atomistic
level. The need to probe polymers across time and
length scales to capture polymer behavior makes probing
dynamics, and particularly computational modeling, in-
herently challenging. With increasing molecular weight,
polymer melts become highly entangled and the long-
time diffusive regime becomes computationally inaccessi-
ble using atomistic simulations. In these systems the dif-
fusive time scale increases with polymerization numberN
faster than N3, becoming greater than 1010 times larger
than the shortest time scales even for modest molecular
weight polymers. While it is clear that the largest lengths
scales of polymer dynamics are controlled by entangle-
ments, the shortest time and length scales required to
resolve dynamic properties are not obvious. This knowl-
edge is critical for developing models that can trans-
pose atomistic details into the long time scales needed
to model long, entangled polymer chains.

One path to overcoming this computational challenge
is to coarse grain the polymer, reducing the number of
degrees of freedom and increasing the fundamental time
scale. The effectiveness of this process depends on re-
taining the smallest length scale essential to capturing
the polymer dynamics. The process of coarse graining
amounts to combining groups of atoms into pseudoatom
beads and determining the bead interaction potentials
[1, 2]. Simple models like the bead-spring model [3],
capture characteristics described by scaling theories, but
disregard atomistic details and cannot quantitatively de-
scribe properties like structure, local dynamics or den-
sities. Immense efforts have been made to systemati-
cally coarse grain polymers and bridge the gap of time
and length scales while retaining atomistic characteris-
tics [4]. One critical issue underlying the coarse graining
process is the degree to which a polymer can be coarse
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FIG. 1. A single C96H194 PE chain represented with increas-
ing degree of coarse graining λ = 2, 3, 4, and 6 methylene
groups per CG bead. Bead diameter corresponds to the min-
imum in the nonbonded interaction for each CG model.

grained while still appropriately capturing polymer prop-
erties and dynamics [5]. The current study probes the
effects of the degree of coarse graining of polymers on
their dynamic and static properties.

With the vast efforts to coarse grain polymers, many
models have emerged with differences in the number of
atoms combined in each bead and the procedure for de-
termining the interaction potentials. One of the most
common coarse-grained (CG) models for polymers is the
united atom (UA) model, which combines each CHn

group into a pseudoatom. The UA interaction param-
eters are determined phenomenologically to reproduce
physical properties such as densities and critical temper-
atures [6–9]. Another model commonly used is the MAR-
TINI model, which utilizes the same approach, matching
bulk densities and compressiblities of short alkane chains
at a larger scale of four CH2 groups per CG bead [10].
More advanced methods such as force matching, iterative
Boltzmann inversion, and optimized relative entropy [11–
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13] have recently been developed to incorporate atomistic
detail into the CG model. With these methods there is an
open question as to the number of atoms to represent by
a single bead and the effect of this coarse-graining scale
on the measured properties of the system. One critical
physics question remains unresolved: namely defining the
shortest length scale in a polymer that is fundamental to
the macroscopic dynamics and properties.[1, 3, 4, 6–13]
Here, this issue is addressed through the development
of CG models with increasing degree of coarse graining
using iterative Boltzmann inversion. By examining how
well these CG models describe both the static and dy-
namic properties of a polymer melt, using polyethylene
(PE) as a model system, we probe this outstanding ques-
tion. The backbone of PE consists of -CH2- methylene
groups that provide a natural unit or scale for coarse
graining. Though the chemical structure of PE is simple,
it is a thermoplastic material useful in a large number of
applications, with tunable mechanical properties deter-
mined by the degree of branching.

Polyethylene chains have previously been studied using
CG models with beads of λ = 3− 48 methylene groups
per bead [14–19]. These studies were able to capture
the radius of gyration as a function of molecular weight
and the pair correlation function between CG beads. As
most of these studies used a large degree of coarse grain-
ing (λ ∼ 20) to study dynamical properties, an extra con-
straint was needed to prevent chains cutting through each
other [20]. With this extra constraint, the mean squared
displacement (MSD), stress autocorrelation function and
shear viscosity of linear and branched PE [20–22] have
been studied for long, entangled chains. However, these
studies did not account for or study the effects of the
coarse-graining degree λ on dynamic properties.

Here for the first time, we elucidate the effect of coarse-
graining degree on the ability to capture both the struc-
ture and dynamics of PE. We are able to capture polymer
chain dynamics for lengths up to C1920H3842 and time
scales of 400 µs using models that accurately represent
atomistic detail. Accessing large length and time scales
allows us to measure quantities like the plateau modulus
which depend on a hierarchy of length and time scales.

Coarse-grained beads shown in Fig. 1 represent λ
methylene groups. We study λ = 2, 3, 4 and 6 and refer
to these models as CGλ. We find that for surprisingly
small λ the chains cross and diffuse rapidly, indicating
that CG features directly link to macroscopic polymer
motion. With this result, we further probed the CG6
model polymer including non-crossing constraints, and
comparing with models with unconstrained dynamics.

The tabulated CG PE potentials were derived from
a single fully-atomistic simulation of a melt of C96H194

PE chains at 500K. The simulation details are given in
the Supplement [23]. The study was then generalized
to melts of CnH2n+2 with n=96, 480 for the fully atom-
istic model, and n=96, 480, 960 and 1920 at 500 K using
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FIG. 2. Tabulated pair potential between CG beads. The UA
and CG4-M potentials are included for comparison.

the CG models. Atomistic simulations used a version of
the Optimized Potentials for Liquid Simulations (OPLS)
potential with modified dihedral coefficients that better
reproduce the properties of long alkanes [24]. With this
modified potential the mean squared radius of gyration
〈R2

g〉 and end to end distance 〈R2〉 match experimental
values [25, 26] better than with original OPLS param-
eters [27]. For the CGλ models, 〈R2〉 for n=96 chains
is within 20% of the atomistic value, while 〈R2〉 for the
MARTINI model is 50% too high. Static properties for
different chain lengths are reported in the Supplement.

Tabulated CG angle and bond potentials were deter-
mined by Boltzmann inversion of the atomistic bond and
angle distributions in Fig. S1. Torsion terms were omit-
ted in all CG models, which may account for the shorter
end to end distances listed in Table SI for the CG2 model.
Tabulated nonbonded potentials were determined by iter-
ative Boltzmann inversion [4]. The intermolecular radial
distribution function g(r) from the atomistic simulation,
shown in Fig. S2, was used as the target for iteration of
the nonbonded potentials shown in Fig. 2. Also shown
are 6-12 Lennard Jones pair potentials for the united
atom (UA) model of Yoon et al. [6], and the MARTINI
(CG4-M) model [10]. The MARTINI parameter ǫ was re-
duced from 0.8365 kcal/mol to 0.803 kcal/mol to match
the density ρ = 0.72 g/cm3 of atomistic simulations for
n = 96 chains. For each CG model a pressure correction
is applied to match the density ρ = 0.72 g/cm3 for n=96.
The similarity in length and energy scales between the
CG4 and CG4-M models is evident in Fig. 2. For each
CGλ model all beads identical interactions, however end
beads have an extra hydrogen atom mass.

The CG6 model has a surprisingly large equilibrium
bond distance relative to the bead diameter. Therefore
a modified soft segmental repulsive potential [28] was
added between CG beads to inhibit chain crossing. We
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FIG. 3. (a) The MSD of the inner 24 -CH2- groups of each
polymer chain at 500 K. (b) Same data as in (a), scaled by
α. The solid lines represent the scaling predictions t1 for the
diffusive regime and t1/4 for the reptation regime.

used a segmental bead diameter of 0.5 nm. This scheme
increases the pressure in our samples by about 80 atm
at fixed density compared to simulations with no con-
straint. We do not re-derive the potential including the
soft segmental bead, however Fig. S3 shows that the non-
crossing bead induces only small changes in g(r) relative
to a model with no constraint. By eliminating the finest
degrees of freedom, CGmodels allow a significantly larger
time step than atomistic models. We use a time step δt
= 20 fs for the CG6, CG4 and CG4-M models, 10 fs for
the CG3 model and 2 fs for the CG2 model, compared
to 1 fs for the atomistic model.

Coarse graining reduces the number of degrees of free-
dom in a system, creating a smoother free-energy land-
scape compared with fully-atomistic simulations. This
speedup can be addressed by including frictional and
stochastic forces [15]. This approach allows large CG
scales, however rigorously correct dissipation requires a
sophisticated generalized Langevin kernel, and simplifi-
cations are usually employed [5]. It has been shown that

10
-1

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
5

10
6

!|
r c
m
(t
)-
r c
m
(0
)|
2
" 
[n
m
2
]

Time [ns] (scaled)

!"#$%&

!"'(&

!"'(%&
1 2 3 4 5 6

0

2

4

6

8

10

 !
 t
im
e
 s
c
a
le
 f
a
c
to
r

 CH2 / Bead

)*&
+,#-.&

!"/'0%&

1/&

FIG. 4. MSD of center of mass scaled with the same α scale
factor as the for the inner -CH2- groups in Fig. 3 (b). The solid
line has slope t1. Inset: The alpha scale factor for different
coarse-grained models and the UA and Martini models.

for small λ CG models without added friction or stochas-
tic forces can be employed, but CG dynamics are signif-
icantly faster than in atomistic simulations [29–36]. To
determine the dynamic scaling factor of the CG models
we compare the MSD of the inner 24 methylene groups
(4, 6, 8 or 12 beads) for CG models and the inner 24
carbon atoms for atomistic simulations for n=96 and 480
as shown in Fig. 3 (a). The mobility of the chains in the
CG models is larger than in atomistic simulations. By
scaling the time for each of the CG models we create a
single collapsed curve for each chain length for both the
atomistic and CG data as shown in Fig.3 (b). Notably,
a single scaling factor α is required to collapse atom-
istic and CG data for each model, independent of chain
length. As seen in Fig. 3b the MSD has reached the dif-
fusive regime where MSD ∼ t1 even for the longest chain
length n = 1920. Over intermediate time scales, the
chains show the expected t1/4 scaling predicted by rep-
tation theory [37]. These results demonstrate that one
can capture long time and length scales with CG models
while accounting for atomistic details.

The MSD of the center of mass was then measured to
test the scaling factor α. Figure 4 shows the MSD of the
chain center of mass for chain lengths n=96, 480, 960,
and 1920. These data have been scaled by the same α
as the monomer MSD, producing an excellent collapse.
The scale factor α as a function of CG model is shown
inset in Fig. 4 along with α for the MARTINI [10] and
UA [6] models. Our CG potentials have a much larger
time scaling factor than the MARTINI and UA models,
similar to the time-scaling factor found previously for
PE for a single λ [30]. Values of α are also comparable
to those found previously for polystyrene, modeled at
a similar coarse-graining level [34]. The UA model has



4

105

106

107

10-1 100 101 102 103 104 105

G
(t

) 
[P

a]

Time [ns] (scaled)

CG2
CG3
CG4

CG4-M
CG6

FIG. 5. Modulus G(t) for each of the CG polymer models at
500K. Filled and open symbols represent the n=96 and n=480
chain length, respectively. Solid lines represent the n=1920
length, while n=960 chains are omitted for clarity.

long been considered approximate to the fully-atomistic
simulation and indeed is ≈40% faster than fully-atomistic
simulations. Interestingly, the time scaling factor is not
monotonic in CG level, with the CG2 and CG6 models
exhibiting the largest speedup. The potential depths in
Fig. 2, relate to the value of α, as described previously
by Depa and Maranas [30].

The polymer entanglement mass Me governs many
properties of the polymer melt and provides information
about chain mobility within the polymer mesh. Experi-
mentally, Me = ρRT/G0

N is determined from the plateau
modulus G0

N of the stress relaxation function G(t) [25].
Experimental values for polyethylene are 1.6-2.5 MPa,
corresponding to Me of 1300-2000 g/mol [25, 26, 38, 39].

The relaxation modulus in each of our CG models was
measured for the four different chain lengths via equilib-
rium stress correlations using the Green-Kubo relation
G(t) = (V/kBT )〈σαβ(t)σαβ(0)〉 where σαβ are the off-
diagonal components xy, xz, and yz of stress. Figure 5
shows G0

N for each of the CG models for n=96 and 480
and for λ ≥ 3 for n = 1920. The times for each model
have been scaled by the corresponding value of α. Though
it shows similar behavior, the UA model is omitted be-
cause the zero-pressure density is higher than the other
models, making comparison difficult. The curves collapse
for the short-time t−1/2 regime, with longer, more entan-
gled chains forming progressively more distinct plateau
regions. The plateau modulus is measured as the value
of the relaxation modulus in the plateau region, roughly
between 20 and 600 ns. Using the longest chain length,
n = 1920, the plateau modulus G0

N = 2.2± 0.3 MPa for
CG6, 2.1± 0.3 MPa for CG4 and 2.1± 0.7 MPa for CG3,
all within the experimental range. For CG4-M G0

N is sig-
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FIG. 6. Density versus temperature for the n=96 samples
cooled at 1.4K/ns.

nificantly higher G0
N = 3.7±0.4 MPa and does not agree

with experimental values. Uncertainties are measured
by dividing the datasets in two and measuring the varia-
tion in the plateau value. Similar plateau modulus values
were found by Padding and Briels [20] for n ≤ 1000 with
λ = 20 model with a non-crossing constraint.

The thermal expansion coefficient is another way to
assess the validity of the CG models. The linear ther-
mal expansion coefficients for the n=96 samples in the
temperature range from 495K to 480K are 5.0, 3.4, 3.5,
3.3, 3.4 ×10−4T−1 respectively for the CG2, CG3, CG4,
CG4-M, and CG6 models, compared with 3.1× 10−4T−1

for the atomistic model. Hence, all the CG models with
λ ≥ 3 agree with the atomistic thermal expansion.

Although one can derive CG potentials using mul-
tiple temperatures [40], our CG models are developed
in the traditional way at a single temperature. Hence
there is uncertainty about the validity of these models
away from the chosen point [41]. Shown in Fig. 6 are
temperature-density data for the CG models from 400K
to 200K. For λ ≤ 4, the curves show a pronounced den-
sity increase between 250K and 330K, corresponding to a
semi-crystalline state. The CG6 model does not capture
crystallinity and we expect that coarser models will not,
either. Previous studies of bead-spring polymer models
indicated that a commensurate bond length and bead di-
ameter leads to crystallization [42]. The melting temper-
ature for n=96 is about 400K, so crystallization occurs
at a lower temperature than expected, yet observation of
any semi-crystalline phase is remarkable. This surprising
feature indicates that although our potentials are derived
at 500K they may be useful away from this temperature.

Here we have shown that the smallest length scale
needed in the hierarchy of length scales to correctly
describe macroscopic behavior and properties is rather
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small, between 4 and 6 monomers. The CG4 model of-
fers a speedup of more than four orders of magnitude over
atomistic simulations, which includes contributions from
the time step δt, scale factor α, and (3λ)2 reduction in the
number of pairwise interactions. The speedup of the CG4
model is about three times faster than the CG3 model
and is comparable the CG6 model. However because the
CG4 model does not require a crossing constraint, we
prefer this model. With this realized speedup polymers
as long as n = 1920 can now be simulated for over 500
µs. Reaching this time scale allows probing some of the
most unique and intrinsic properties of polymers includ-
ing the plateau modulus and intermediate t1/4 scaling
in the mean squared displacement. From the computa-
tional viewpoint, the CG models developed significantly
reduce the resources needed to study polymers for long
times. Our results for the plateau modulus and diffusion
dynamics show that without adding extra constraints the
CG4 model captures the atomistic detail needed for cor-
rect dynamics from monomer to polymer scale.
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