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The charge formation at interfaces involving electrolyte solutions is due to the chemical equilibrium
between the surface reactive groups and the potential determining ions in the solution (i.e., charge
regulation). In this Letter we report our findings that this equilibrium is strongly coupled to
the precise molecular structure of the solution near the charged interface. The neutral solvent
molecules dominate this structure due to their overwhelmingly large number. Treating the solvent as
a structureless continuum leads to a fundamentally inadequate physical picture of charged interfaces.
We show that a proper account of the solvent effect leads to an unexpected and complex system
behavior that is affected by the molecular and ionic excluded volumes and van der Waals interactions.
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Interfaces involving polar liquids are often charged.
The charging is due to ionic dissociation, adsorption or
both at the interface [1, 2]. This leads to a bulk potential
and charge redistribution in the vicinity forming an elec-
tric double layer (EDL). Understanding the EDL is of key
importance to theory of electrolytes, colloid science, soft-
matter systems, rheology and dynamics of complex fluids,
corrosion and material science. As the solvent is typically
uncharged, it is only considered to be less important than
the ions. Hence, it is often ignored or is considered only
to provide molecular interpretation for the dielectric per-
mittivity [3–11]. We demonstrate that the solvent role is
much more important than that. It provides a structural
framework for the solution, which has a strong effect on
the surface charge formation. Surprisingly it is the non-
electrostatic interactions (e.g., excluded volume, van der
Waals) that determine the properties of charged inter-
faces.
An early analysis of an EDL was offered by Gouy [12,

13] and Chapman [14], which was based on the continuum
Poisson-Boltzmann equation [15]

∇2Ψ = −
1

εε0

∑

i

ρ0i qi exp
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−qiΨ

kBT

)
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where Ψ is the electrostatic potential, qi is the charge
of ion species ”i” (in units of the elementary charge e),
kBT is the thermal energy, ρ0i is the bulk number density
of charged species i, ε and ε0 are the medium dielectric
permittivity, and the dielectric constant of vacuum. The
problem was solved by fixing the value of the surface po-
tential Ψ = Ψs. Alternatively, the potential derivative
(i.e., the surface charge σ) can be specified to a known
value, or εε0(∇Ψ)s = σ. Both conditions are well de-
fined and very popular. However they are not physi-
cally justified. This was first recognized by Ninham and
Parsegian [16] who argued that the surface charge and
potential should be determined from the thermodynamic

equilibrium between the surface groups and the dissolved
species that chemically interact with them. The ionic
species that attach to or detach from the surface deter-
mine the charge and potential at the interface. They
are called potential determining ions (PDIs). This mech-
anism is called surface charge regulation and it is the
condition that provides a physically correct description
[17–25]. While the surface charge regulation may involve
multiple chemical reactions [20], a reasonable model was
suggested by Chan et al. [17], based on the equilibria

AH+
2 + BH ⇀↽ AH+ BH+

2 , pK+ = − log10 K+ (2)

AH+ BH ⇀↽ A− + BH+
2 , pK− = − log10 K−.

whereK+ andK− are the equilibrium constants, and AH
is a surface chemical group that can either bind or release
a hydrogen ion depending on local densities ρBH

+

2

, ρBH of

species BH+
2 and BH in the solution. The species BH can

lose another proton in the reaction 2BH ⇀↽ B− + BH+
2

and become negative. Alternatively it may bind one and
become positive. The latter species is the PDI. Its con-
centration is defined in the subsurface layer at the inter-
face. This model translates into the following relation-
ship [17, 26]
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ρs
AH
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AH
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Γ is the number of ionizable groups per unit area at the
surface and ρsi (i = AH,AH+

2 ,A
−) are the surface den-

sities of the various charged and uncharged groups at-
tached at the boundary of the EDL. Eq. (3) provides
a physically consistent boundary condition to Eq. (1).
The second boundary condition requires charge neutral-
ity away from the surface.
The continuum model is incomplete since it does not

take into account the structure of the solution. A better
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theoretical framework is offered by more modern statisti-
cal mechanical approaches [3–9, 11, 27]. However, these
models are often simplified by representing the solvent
as a structureless continuum and account explicitly only
for interactions between the ionic species. Such models
are defined as ”primitive”. In contrast, models that take
into account the interactions between all species includ-
ing the solvent fall under the ”civilized” category [11].
The primitive model for dilute electrolyte solutions is
equivalent to the continuum theory based on equation
(1) [28]. For high electrolyte concentrations primitive
models may produce structural peaks in the density pro-
files, which are due to ion-ion correlations but the effect
of the solvent molecular contribiution is still absent.
Recently Heinen et al. [9] incorporated a surface

charge regulation condition into a primitive model for
describing charged colloidal suspensions using an inte-
gral equation approach [29]. This work presents a step
forward but it is incomplete because it neglects the sol-
vent effect on the structure.
We argue that the physically adequate analysis of an

EDL should include charge regulation at the interface in
conjunction with a full account of the solvent contribu-
tion to the solution structure. Such an analysis is not an
incremental improvement but reveals a number of new
effects that were yet unknown. This is because the sur-
face charge regulation [see Eqs. (2) and (3)] is extremely
sensitive to the local structure and ionic density in the
vicinity of the reaction surface. While the PDIs are very
important, their local density is influenced by the solvent
due to its overwhelmingly high concentration. The sol-
vent structure determines that of the PDIs and hence,
couples with the charge regulation [see Eq. (2)]. The fac-
tors governing the coupling are the excluded volume and
long-ranged attractive interactions between all species.
Our analysis of the EDL is based on classical density

functional theory (DFT) [3, 30–34] starting with a grand
thermodynamic potential that has the form

Ω [{ρi(z)}] = kBT
N
∑

i=1

∫

dzρi(z)
{

ln
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λ3
i ρi(z)

]

− 1
}

+
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long[{ρi(z)}] +

N
∑

i=1

∫

dzρi(z) [Vext(z)− µi] , (4)

where λ =
√

h2/(2πmikBT ) is the thermal de Broglie
wavelength, h being the Planck’s constant, mi is the
mass of species “i”, and ρi(z) is the local density (z be-
ing the coordinate normal to the interface) of component
“i”. Vext(z) is the external field due to the charged in-
terface. F ex

HS[{ρi(z)}] and F ex
long[{ρi(z)}] account for the

hard sphere (excluded volume) and all long-range inter-
actions respectively. The hard sphere (HS) interactions
are implemented using the theory of Rosenfeld [35], while
the long range interactions are expressed by Lennard-

Jones (LJ) and Coulombic electrostatic (EL) contribu-
tions. The grand potential defined by Eq. (4) corresponds
to an open system in contact with infinite reservoir for
all species to ensure constant chemical potentials µi.
The electrolyte is dissolved in a hard core-LJ solvent.

The bulk LJ contribution between species with diameters
dj and dj , separated by distance rij is given by

ΦLJ (rij) = 4ǫij

[
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dij
rij

)12

−

(

dij
rij

)6
]

, rij > dij (5)

where dij = (di + dj)/2, . The LJ interaction of a
molecule (or ion) of type “i” with a wall is

ΦLJ (z) = ǫi

[
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]

, z > di/2 (6)

where ǫij and ǫi determine the magnitudes of the LJ en-
ergy. All charged species experience electrostatic inter-
actions in the bulk

Φel (rij) =
qiqje

2

4πεε0rij
, rij > dij , (7)

as well as with the charged wall

Φel (z) =
qiσz

2εε0
, z > di/2. (8)

The interaction energy is infinite for separations less
than the cut-off distances dij = (di + dj)/2 and di/2 [see
Eqs (5) to (8)]. A LJ fluid with isotropic interactions
cannot provide a molecular interpretation of the dielec-
tric solvent properties. They are accounted for by the
introduction of a bulk dielectric permittivity as a param-
eter to scale the electrostatic terms [Eqs. (7) and (8)]
to physically correct magnitudes. Such an approach is
justified for moderately concentrated solutions [11, 27].
The solution consists of (i) solvent molecules, (ii) PDIs
(BH+

2 ), (iii) background ions with the same charge as the
PDIs that do not chemically bind to the EDL interface,
and (iv) negative counterions (B−) that are common to
the PDIs and the background ions. The LJ energy pa-
rameters are assumed to be the same for all possible in-
teractions: ǫij = ǫi = ǫ. While this is a rather simplified
model, it captures two very important physical character-
istics of the solution: the excluded volume of all species,
and the long-range interactions such as Coulombic and
nonelectrostatic attractions between all species as well as
with the surface. The model is civilized as the solvent is
explicitly taken into account. The focus of the analysis
is on the effect of the solvent structure on the surface
charge regulation given by Eq. (2).
The grand thermodynamic potential Eq. (4) is min-

imized with respect to the density distribution of each
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component, δΩ[ρi(z)]/δρi(z) = 0, using the Tramonto
code [36]. The latter was modified to include the sur-
face charge regulation boundary condition Eq. (3). This
procedure gives the spatial distribution of all species in
the EDL. The surface charge σ is obtained from balanc-
ing it against the bulk excess charge to achieve global
electro-neutrality.
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FIG. 1: Surface charge of an EDL as a function of the solvent
molecular diameter. The different curves are for different val-
ues of the LJ parameter ǫ, which starts at zero (top curve)
and increases by increments of 0.1 kBT , with the exception
of the dashed curve, which is for ǫ/kBT = 0.76 (see the text).
The dot corresponds to the critical point. The curves for
ǫ/kBT = 1.1 and ǫ/kBT = 1.2 are extrapolated (dot-dashed
parts) since in that region the surface charge is so sensitive to
ds/d that exact computation becomes extremely hard.

Fig. 1 shows the dependence of the surface charge σ
on the size of the solvent molecules. All ionic species
have the same molecular diameter equal to d. The latter
is adjusted to d = 0.288 nm so that for overall density
ρd3 = 0.8 and solvent diameter ds = d, the total molar-
ity of all species is 55.5 M. All ions are monovalent and
the ionic strength is 10 mM, which includes both PDIs
(with concentration 0.1 mM) and non-PDIs, both sharing
the same counterion. This corresponds to Debye wave-
length κ−1 = 3.04 nm, or (κd)−1 = 10.56. The density
of surface ionizable groups (see Eq. 2) is 8×1018 m−2, or
0.66 per d2. The parameters for the surface reaction are
pK+ = −2 and pK− = 6 (see [26]). In the limit ds → 0,
the solution becomes primitive and all curves coalesce
into a single point, σd2/e = −2.94 × 103. However the
physical reality, is represented by the far right region of
the figure, where the solvent size is comparable to that
of the ions. This proves the importance of the neutral
solvent molecules and their interactions for understand-
ing charged interfaces. The top curve in Fig. 1 illustrates
the effect of purely excluded volume interactions on the
surface charge σ. It shows that the magnitude of the
surface charge starts to appreciably change after the sol-
vent diameter exceeds ∼ 0.17. Including attraction be-
tween the species (including the solvent) has a dramatic
effect on the system behavior. As the LJ parameter ǫ in-

creases (in steps of 0.1 kBT ) the charge vs solvent diam-
eter curves gradually become non-monotonic and above
ǫ/kBT = 0.3 start exhibiting a minimum. The depen-
dence of the charge on the solvent diameter becomes very
strong as the latter approaches values comparable to the
ions. Note that in a real electrolyte solution, the ionic
dimensions are similar to that of the solvent species [37].
The strong effect of the solvent size on the surface charge
is driven by the competition between the excluded vol-
ume effects and the attraction between the ions and the
solvent molecules. As the solvent molecules “grow” the
ions (most importantly the PDIs) have less space avail-
able and are expelled towards the surface. At the same
time the attractive interactions lead to solvation of the
ions and their transfer from the interface into the bulk.
The greater the LJ parameter, the stronger the solvation
effect. The LJ interactions with the wall for all species
also become stronger with the increase of ǫ but neverthe-
less the solvent-ion interactions prevail. This may not be
the case if different values for the LJ parameters for bulk
and wall interactions are selected. Our approach allows
us to analyze electrolyte properties and interpret experi-
mental observations that go beyond simple electrostatics
[38–43]. Accounting for the solvent contribution alone
will still be insufficient if the proper surface chemistry is
replaced by a constant charge or potential condition at
the interface.

In the primitive limit only the ions are involved and the
actual density is much less that the one for liquid states,
ρd3 ≃ 0.8. The solution is then represented by a plasma-
like gas. Its structure also remains gas-like and that is
problematic when a surface charge regulation condition
is enforced. As the solvent diameter increases so does
the overall solution density and in presence of attractive
interactions the system undergoes a phase transition as
indicated by the interruption of the charge vs solvent di-
ameter curves in Fig. 1. The region under the dotted
curve corresponds to the spinodal domain in the phase
diagram of the solution. The dot represents the surface
charge at the critical point and the dashed curve that
passes through that point is for ǫ/kBT = 0.76. The po-
sition of the spinodal has been compared to results for
decomposition in LJ fluids [26, 31]. This formal phase
separation again indicates that the primitive models are
not working when applied to a charge regulating EDL.
These models miss very important physical effects be-
cause they are gas-like, and yet applied to the liquid
density domain. The situation is similar to applying the
ideal gas equation to dense liquids. The surface charge
density is greatly affected by that inconsistency.

Fig. 2 shows the density distribution of all solution
components in the EDL for ǫ/kBT = 0.0 and ds/d = 1.
The dashed lines present results obtained using the prim-
itive model, while the full curves are results from a com-
putation that includes the solvent. The relative increase
in density of the PDIs and non-PDIs (the two curves over-
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FIG. 2: Density profiles for the counterions (top curves), co-
ions (bottom curves), and neutral solvent (middle curves).
The full curves were calculated using DFT while the dashed
ones correspond to the ”primitive” Poisson-Boltzmann limit.
The distributions for PDIs and background counterions are
undistinguishable. The LJ parameter is ǫ/kBT = 0.0, all
other parameters are described in the text.

lap) in the subsurface layer next to the interface is less
than 20%. In contrast, if the solvent molecules are taken
into account, the increase of the PDIs and non-PDIs in
the subsurface layer is about seven times the bulk value.
The solvent dominates the structure by creating a matrix
where the only option for an ion (positive or negative) is
to move into a vacancy that is not occupied by a sol-
vent molecule. The excluded volume effect alone is so
strong that even the surface co-ions peak near the in-
terface. The background (non-PDI) counterions always
follow the same density distribution shape as the PDIs
because of the same charge. This implies that both ionic
species respond to the electrostatic potential in exactly
the same way. However, the surface charge regulation
chemical equilibria (2) involve only the PDIs. Therefore,
they regulate the charge, while all other ionic species are
affected only by the electrostatics. More details are out-
lined in the Supplemental Material [26].

All ions and solvent molecules in Fig. 2 have the same
size d, hence the structure oscillations for all species are in
phase. As the distance from the solid interface increases
this structure decays as seen from Fig. 2. The rate of de-
cay can be quantitatively assessed by observing the peak
height position with distance as suggested by Martynov
[44]. According to that analysis we expect that the peak
heights for each component will decrease exponentially
with the distance. For the charged ions, that implies
first subtracting the continuum electrostatic component
characterized by the Debye wavelength κ−1. After such
subtraction and normalizing the distributions with the
respective bulk values we find that all curves collapse
onto a single curve (see Fig. 3). The peak heights of that
curve exponentially decrease with a characteristic decay
length (βd)−1 = 1.3. The solution structure dominates
the properties near the charged surface, but its effect de-
creases with distance more rapidly then that due to pure

electrostatics characterized by the Debye wavelength. It
is near the surface however, where the structure is crucial
for the surface charge.
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FIG. 3: Structure decay with distance. The LJ parameter is
ǫ/kBT = 0.0. See also the text for details.

The charge formation at the boundary of an EDL is
governed by the chemical equilibrium between the surface
ionizable groups and the PDIs in the subsurface layer.
It is very sensitive to the precise solution structure in
the vicinity of the interface. The structure couples to
the surface chemistry leading to a complex dependence
of the surface charge density on the solvent molecular
size. This complexity would be missed unless the solvent
molecular effect and the surface charge regulation are
both taken into account. The civilized analysis reveals
that there are two characteristic length scales associated
with (i) the electrostatic long-range screening, κ−1, and
(ii) structure, β−1, which determines the solution-wall in-
teractions at close proximity, but rapidly decreases with
distance. In effect the neutral solvent governs the magni-
tude of the surface charge. It is also valid to state that a
civilized model alone is inadequate if a constant charge or
potential is enforced at the EDL interface as an external
condition.
Our approach allows further investigation of proper-

ties of the EDL that are beyond the electrostatic interac-
tions [38–43] such as solvation of the ions in the bulk and
at the wall, interactions and structure of large charged
molecules (proteins, polyelectrolytes) near charged walls.
It can be generalized to address non-equilibrium situa-
tions like surface reaction kinetics and solution transport
[31, 45]. A better understanding of the EDL properties
at the molecular level will lead to new insights in many
areas of physical sciences.
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