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We follow the time evolution of a superfluid Fermi gas of resonantly interacting 6Li atoms after
a phase imprint. Via tomographic imaging, we observe the formation of a planar dark soliton, its
subsequent snaking, and its decay into a vortex ring, which in turn breaks to finally leave behind
a single solitonic vortex. In intermediate stages we find evidence for an exotic structure resembling
the Φ-soliton, a combination of a vortex ring and a vortex line. Direct imaging of the nodal surface
reveals its undulation dynamics and its decay via the puncture of the initial soliton plane. The
observed evolution of the nodal surface represents dynamics beyond superfluid hydrodynamics,
calling for a microscopic description of unitary fermionic superfluids out of equilibrium.

Solitonic excitations such as solitons, vortices and vor-
tex rings are found in a large variety of nonlinear me-
dia, from classical fluids and plasmas to polyacetylene
chains and superconductors. While ubiquitous, their in-
trinsic properties are tailored by the host medium. In
superfluids, which are characterized by a complex order
parameter with a well-defined phase and a non-viscous
flow, such excitations correspond to phase defects and
exhibit properties non-existent in their classical counter-
parts. In particular, a vortex is topologically protected
owing to the quantized circulation of the velocity field,
and a traveling soliton experiences superfluid back flow
determined by the phase difference across it [1, 2]. The
quantum statistics of the particles forming the superfluid
is yet another ingredient which dramatically affects the
properties of these defects. In Fermi superfluids, as op-
posed to the bosonic case, dark solitons and vortices are
known to host in-gap fermionic excitations in their cores,
from the Andreev bound states in the generic case [3, 4],
to the more exotic Majorana fermions in the presence of
spin-orbit coupling [5, 6].

Importantly, in a quantum fluid with short-ranged in-
teractions, these phase defects are localized within the
microscopic length scale of the system: the healing length
ξ. The healing length sets the length scale above which
the superfluid dynamics is well captured by the hydro-
dynamic formalism. At length scales on the order of ξ or
smaller, a microscopic description is required, and this is
where the dichotomy between Bose superfluids and Fermi
superfluids becomes stringent. While weakly interacting
Bose-Einstein condensates (BEC) are well understood in
terms of the Gross-Pitaevskii (GP) theory, a complete
microscopic wave equation for strongly-interacting Fermi
superfluids remains to be established. At the mean-
field level, a unified description can be formulated within
the Bogoliubov–de Gennes (BdG) formalism, which con-
nects to the GP equation in the limit of weakly inter-
acting BECs, and contains the necessary fermionic de-
grees of freedom in the Bardeen-Cooper-Schrieffer limit
(BCS) [1, 2, 4, 7]. However, while the BdG framework

provides a good description of these two limiting cases,
it is unclear whether it contains the right ingredients to
quantitatively handle the short-range behavior of soli-
tonic excitations in the strongly correlated regime [8].
The unitary Fermi gas realized in ultracold atom experi-
ments offers a unique opportunity to clarify this issue, as
it resides at the point of the BEC-BCS crossover where
beyond mean-field correlations are expected to be the
strongest [9]. It is also the regime where the healing
length ξ is the smallest – on the order of the inter-particle
spacing – such that phase defects are as localized as pos-
sible in a quantum fluid.

A natural approach to experimentally reveal the core
dynamics of such defects is to trigger their decay. Soli-
tonic excitations indeed follow a well-defined hierarchy
in terms of stability and energy cost in three dimensions,
the planar soliton being the most energetic and unstable
towards the formation of other solitary waves [10–15].
In weakly interacting BECs, dark solitons have been ob-
served to decay into vortex rings and vortices [16–20] as
a consequence of the snake instability, the undulation of
the soliton plane [10]. In the case of strongly interacting
Fermi superfluids, similar scenarios have been predicted
numerically within a mean-field approximation [21–23],
but an experimental support of such microscopic dynam-
ics is still lacking.

In this Letter, we create a cascade of solitonic excita-
tions in a unitary Fermi gas of 6Li atoms. Starting from
a planar dark soliton created via phase imprinting, we
observe the formation of ring defects which eventually
decay into a single solitonic vortex. By means of a to-
mographic imaging technique [24], we are able to follow
the surface dynamics of the soliton’s nodal plane at the
level of the interparticle spacing, as it snakes, breaks and
converts into the topologically protected solitonic vortex.
Our measurements allow for a quantitative analysis of
the snaking dynamics of the initial dark soliton, awaiting
comparison to time-dependent theories of strongly corre-
lated fermions.

We create a strongly interacting fermionic superfluid
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FIG. 1. (Color online) (a) Cascade of solitonic excitations in a unitary Fermi superfluid following the phase imprint. A planar
soliton snakes and decays into a vortex ring. Shown are images of the density distribution in the central slice of the superfluid,
after rapid ramp and time of flight, for the first 20 ms after the imprint. The imprint also generates two sound waves propagating
towards the edges. (b) Time-series of the central slice up to t = 100 ms, cropped to the region around z = 0.

using a balanced mixture of the two lowest hyperfine
states of 6Li (|1〉 and |2〉) at a Feshbach resonance [25].
Our atomic clouds contain ∼ 7 × 105 atoms per spin
state confined in an elongated trap, combining a radial
optical potential in the x-y plane (trapping frequency
ω⊥/2π = 69(6) Hz) and a shallower axial magnetic po-
tential along the z axis (trapping frequency ωz/2π =
10.87(1) Hz). The axial and radial Thomas-Fermi radii
of the cloud are Rz = 326µm and R⊥ = 54µm, and
correspond to a chemical potential at the center of the
cloud µ = h × 3.7(2) kHz = 54(5) ~ω⊥. The gas is
thus deep in the three-dimensional regime. Gravity
slightly weakens the trapping potential along the ver-
tical y-direction [26]. Phase imprinting is realized as in
Refs. [24, 28–31], whereby one half of the superfluid is
exposed to a blue-detuned laser beam for a time suffi-
cient to advance the phase by approximately π. These
experimental parameters are similar to those of previ-
ous works [24, 31], where a single solitonic vortex was
detected and observed to undergo a deterministic preces-
sional motion for several seconds. Here, we study the
evolution of the excitations at early times following the
phase imprint. To probe such dynamics, we combine the
so-called rapid ramp technique and tomographic imag-
ing [24, 26]. In our experimental sequence, the rapid
ramp is performed at a variable wait time t following the
imprint. We then slice a thin layer of the atomic cloud at
a chosen y position, and destructively probe its density
distribution via absorption imaging.

Fig. 1a shows a time sequence of images recorded in the
first 20 ms after the phase imprint, which correspond to
the density distribution at the central slice (near y = 0)
of the superfluid. At the location of the imprinted phase
jump (z = 0), a slow and straight dark soliton emerges

and subsequently undergoes a snaking motion, seeding
the puncture of the nodal surface. The broken soliton
evolves into a ring structure, visible in the central slice
as a pair of nodal points. Fig. 1b presents a zoomed-
in view of the soliton’s time evolution up to 100 ms after
the imprint. Simultaneous with the soliton’s core dynam-
ics, two wavefronts quickly propagate to the edges of the
cloud, which we identify as sound waves. The upper and
lower sound wavefronts are found to propagate at speeds
of 13.1(4) mm/s and 13.1(8) mm/s respectively, which co-
incide with the speed of sound of 12.9(1) mm/s estimated
from the peak density using the relation cs =

√
ξB/3vF,

where ξB = 0.37 is the Bertsch parameter [32] and vF the
Fermi velocity. The apparent large amplitude of these
sound waves is a consequence of the rapid-ramp [26].

The dynamics is analyzed in detail in Fig. 2, showing
residuals of the central slice as a function of time, along
the axial cut at x = 0 (Fig. 2b) and along its outer edge
near x = R⊥ (Fig. 2c). The difference between the char-
acteristic speeds of the various waves generated after the
phase imprint is striking. One recognizes the two initially
created sound waves following linear trajectories with op-
posite slopes, while the dark soliton remains near z = 0
with negligible velocity. A second set of shallower sound
waves is emitted about ∼ 5 ms after the initial sound
wavefronts, forming all together a pattern of hydrody-
namic wakes. The rapid vanishing of the sound contrasts
with the persistence of the solitonic wave near z = 0.
Close to 100 ms after the imprint, a single solitonic vor-
tex remains, precessing in the superfluid, with a period
of ∼ 1.4 s along the z axis [24, 26, 31], which is more
than an order of magnitude longer than the duration of
the cascade.

In order to obtain a complete picture of the dynam-
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FIG. 2. (Color online) Overview of the dynamics following
the phase imprinting. (a) Representative images of the central
slice at t = 4, 50 and 95 ms showing a planar soliton (S), the
nodal points of a vortex ring (R) and a vortex line (V). The
vertical lines indicate the regions of interest of the generation
of residuals in (b). (b) Residuals on the central slice along the
central axial cut x = 0 (upper panel) and an outer axial cut
(lower panel). Dark (bright) color indicates density depletion
(excess). Two sound waves rapidly propagate to the edges,
while a sharp depletion remains at the center. Around t =
5 ms, a second set of shallower sound waves is emitted. The
residuals show the puncture of the soliton plane in the central
slice (t ∼ 15 ms) and the return of a vortex line at t ∼ 80 ms.

ics, three-dimensional tomography of the superfluid is
performed. Fig. 3 displays a set of representative to-
mographic images at various times, giving access to the
local pair density after the rapid ramp. From these im-
ages, we are able to reconstruct the structure of the defect
engraved in the superfluid and follow its time evolution.
The right panel of Fig. 3 shows the reconstructed deple-
tion as would be seen from the long axis of the cloud. At
early times, a surface of depletion cutting through the en-
tire cloud’s section is observed, the planar dark soliton.
It subsequently tears in its upper half and then under-
goes a cascade into structures with smaller and smaller
nodal area. The hole appearing in the initial nodal sur-
face is seen to continuously grow in size, leading to the
formation of a transient asymmetric vortex ring, com-
bining the bottom part of the initial soliton and a vortex
line bent in a semicircle on the upper part. At this stage
one might anticipate that the nodal area will naturally
heal into a standard vortex ring, by shrinking into a sin-
gle loop with a core of size ξ. However, the tomographic
images obtained at later times suggest a more compli-
cated scenario [26], where a second puncture occurs in
the lower nodal plane. This results in the formation of
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FIG. 3. (Color online) Tomography of the cascade. Main
panel (left): representative tomographic images at different
stages of the cascade. The field of view is centered on the de-
fect’s z position. Right column: structure of the depletion due
to the defect, as would be seen along the z-axis, reconstructed
from the tomographic images. t = 3 ms: sharp density deple-
tion across the whole cloud signaling a planar dark soliton.
t = 7 ms: snaking of the soliton plane and first signature of
a puncture. t = 9, 16 and 20 ms: the puncture in the upper
half of the soliton plane grows and yields an asymmetric vor-
tex ring, with a nodal area left at the bottom. t = 85 ms: the
lower nodal area is punctured and a vortex line forms across
a vortex ring. t = 95 ms and t = 400 ms: the ring part of
the defect progressively disintegrates. t = 1000 ms: a single
solitonic vortex remains.

a horizontal line depletion which we interpret as a vor-
tex line intersecting the vortex ring. This structure is
seen in the tomographic images e.g. at t = 85 ms in
Fig. 3 and it resembles the Φ-soliton recently proposed in
Ref. [15]. At even later times, the ring part of this exotic
defect progressively disintegrates (as seen at t = 95 ms
and 400 ms in Fig. 3), leaving behind a single solitonic
vortex (t = 1 s), which precesses in the superfluid. It is
the precession of this remnant solitonic vortex which has
been studied in [24, 31].

Recently, several theoretical works have treated the
evolution of fermionic superfluids following a phase im-
print [21, 23, 33, 34] and the possible cascade scenarios
following the decay of a planar dark soliton [22, 23, 35, 36]
via various mean-field approaches. In some of these
works, it has been found numerically that in a cylin-
drically symmetric potential with negligible dissipation,
a planar soliton decays into a vortex ring, which then
undergoes a long-lived oscillatory motion along the z
axis [22, 35, 36]. By mimicking experimental imper-
fections, such as trap distortions [21], and imperfect
phase imprinting [23, 34], later works found that the
vortex ring further decays into a single remnant vor-
tex. The proposed scenarios are however distinct from
our observations. Recent simulations based on the GP
equation reveal a variety of dynamical pathways towards
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the final single vortex, via intermediate “Chladni soli-
tons” [15, 37].

At the origin of the cascade lies the snaking instabil-
ity of the soliton. In order to quantify this undulation
dynamics, we perform a Fourier analysis on the soliton’s

shape zs(x) ≈ A0+ΣN
n=1An cos

(
2πn x

2R⊥
+ φn

)
in terms

of the transverse modes of wavelengths λn = 2R⊥/n,
the integer n being the mode number, with Fourier am-
plitudes An and phases φn. Fig. 4a displays selected
images of the snaking soliton, and Fig. 4b the corre-
sponding nodal profiles zs(x) obtained from the density
minima. For each profile, the result of the Fourier ex-
pansion up to the 5th order (gold solid line) is super-
imposed, illustrating that the undulation observed here
is well characterized in terms of transverse mode exci-
tations. Fourier spectra of the soliton’s undulation are
obtained for 2 ms≤ t ≤ 11 ms (see Fig. 4c), and the evo-
lution of the amplitudes An is reported in Fig. 4d. We
find that the fundamental mode λ1 = 2R⊥ largely dom-
inates this dynamics, with a relative weight consistently
higher than that of the harmonics and a significantly
larger growth velocity Ȧ1. The velocities Ȧn decrease as
the mode number n increases (see Fig. 4e). The contri-
bution of the modes n > 5 was found to be insignificant.
Note that it is conceivable that the rapid ramp reduces
the visibility of the modes n >∼ 10 as their wavelengths
are on the order of the observed soliton width (∼ 20µm)
or smaller.

Superfluid hydrodynamics predicts an exponential
growth An(t) = An(0) exp(t/τn) of each mode [38, 39].
The linear growth observed here might reflect the early
time dynamics An(t) ≈ An(0)(1 + t/τn). For the fun-
damental mode, one finds a rate τ−11 = Ȧ1/A1(0) ≈
2π × 76 Hz, close to the radial trapping frequency ω⊥.
This is consistent with the result τ−11 = ω⊥ of a stabil-
ity analysis of solitons in a trapped superfluid [40]. The
growth appears to remain linear, instead of exponential,
for times t > τ1, an effect possibly tied to the inhomo-
geneity of the transverse confinement. Within the local
density approximation, each surface element of the soli-
ton propagates at a fixed fraction of the local speed of
sound, set by the current-phase relation [41, 42]. This
causes the bending of the soliton into a drum-like profile,
whose amplitude increases at constant velocity. Further
insight could be obtained by comparing the measured
velocities Ȧn to results from numerical simulations along
the lines of Ref. [39], with the inclusion of a transverse
harmonic confinement.

In conclusion, we have observed a cascade of solitonic
excitations in a strongly-interacting Fermi superfluid,
from an initial planar dark soliton towards a final, rem-
nant solitonic vortex, through an intermediate ring struc-
ture resembling the recently predicted Φ-soliton [15]. At
the origin of the cascade lies the snaking instability,
which we characterized quantitatively by studying the
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FIG. 4. (Color online) Spectral analysis of the snaking dy-
namics. (a) Snapshots of the soliton’s undulation (central
slice at y = −13µm). (b) Extracted undulation shapes zs(x)
(black dots) along with the corresponding Fourier expansions
to the 5th order (solid gold line). (c) Fourier spectra at t = 3
and 11 ms. (d) Fourier amplitudes An as a function of time,
for n = 1 (circle), 2 (square), 3 (triangle) and 4 (diamond)
and their fits to a line (solid lines). The error bars indicate
the standard deviation of the mean obtained from a 3-point
binning of the data. (e) Growth velocities Ȧn for n = 1 to 5,
obtained from the linear fits in (d), with the error bars being
the fit error.

evolution of transverse Fourier modes. The breaking dy-
namics of the unitary Fermi gas studied here occurs at
the scale of the interparticle spacing, and provides a novel
experimental input for microscopic theories of strongly
interacting fermions. A natural extension of our work
is to approach a regime where the snake instability is
inhibited, e.g. via a strong confining potential in the
radial direction. Future prospects are a measurement
of the soliton’s current-phase relation in the BEC-BCS
crossover [41, 42], the detection and manipulation of An-
dreev bound states trapped inside the soliton [3, 4], and
the creation of soliton trains in the presence of spin im-
balance, which would realize one limit of Fulde-Ferrell-
Larkin-Ovchinnikov states [43–45].

We would like to thank Joachim Brand and Lev
Pitaevskii for fruitful discussions, Julian Struck for a
critical reading of the manuscript, and Parth Patel and
Zhenjie Yan for assistance in the data analysis. This work
was supported by the NSF, the ARO MURI on Atom-
tronics, AFOSR PECASE and MURI on Exotic Phases,



5

and the David and Lucile Packard Foundation.

[1] R. G. Scott, F. Dalfovo, L. P. Pitaevskii, and S. Stringari,
Phys. Rev. Lett. 106, 185301 (2011).

[2] D. K. Efimkin and V. Galitski, Phys. Rev. A 91, 023616
(2015).

[3] C. Caroli, P. d. Gennes, and J. Matricon, Phys. Lett. 9,
307 (1964).

[4] M. Antezza, F. Dalfovo, L. P. Pitaevskii, and
S. Stringari, Phys. Rev. A 76, 043610 (2007).

[5] Y. Xu, L. Mao, B. Wu, and C. Zhang, Phys. Rev. Lett.
113, 130404 (2014).

[6] X.-J. Liu, Phys. Rev. A 91, 023610 (2015).
[7] W. Wen and G. Huang, Phys. Rev. A 79, 023605 (2009).
[8] A. Bulgac and M. M. Forbes, Quantum Gases: Fi-

nite Temperature and Non-Equilibrium Dynamics (Vol.
1 Cold Atoms Series)., edited by M. D. N.P. Proukakis,
S.A. Gardiner and M. Szymanska (Imperial College
Press, London, 2013).

[9] W. Zwerger, ed., The BCS-BEC crossover and the uni-
tary Fermi gas, Vol. 836 (Springer, 2011).

[10] A. E. Muryshev, H. B. van Linden van den Heuvell, and
G. V. Shlyapnikov, Phys. Rev. A 60, R2665 (1999).

[11] D. L. Feder, M. S. Pindzola, L. A. Collins, B. I. Schneider,
and C. W. Clark, Phys. Rev. A 62, 053606 (2000).

[12] J. Brand and W. Reinhardt, J. Phys. B: At. Mol. Opt.
Phys. 34, L113 (2001).

[13] J. Brand and W. P. Reinhardt, Phys. Rev. A 65, 043612
(2002).

[14] S. Komineas and N. Papanicolaou, Phys. Rev. A 68,
043617 (2003).
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[23] P. Scherpelz, K. PadaviÄ, A. Ranon, A. Glatz, I. S. Aran-
son, and K. Levin, Phys. Rev. Lett. 113, 125301 (2014).

[24] M. J.-H. Ku, W. Ji, B. Mukherjee, E. G. Sanchez, L. T.
Cheuk, T. Yefsah, and M. W. Zwierlein, Phys. Rev. Lett.
113, 065301 (2014).

[25] W. Ketterle and M. Zwierlein, Rivista del Nuovo Cimento
31, 247 (2008).

[26] See Supplemental Material at [url], which includes
Ref. [27].

[27] M. W. Zwierlein, J. R. Abo-Shaeer, A. Schirotzek, C. H.

Schunck, and W. Ketterle, Nature 435, 1047 (2005).
[28] S. Burger, K. Bongs, S. Dettmer, W. Ertmer, and

K. Sengstock, Phys. Rev. Lett. 83, 5198 (1999).
[29] J. Denschlag, J. E. Simsarian, D. L. Feder, C. W. Clark,

L. A. Collins, J. Cubizolles, L. Deng, E. W. Hagley,
K. Helmerson, W. P. Reinhardt, S. L. Rolston, B. I.
Schneider, and W. D. Phillips, Science 287, 97 (2000).

[30] C. Becker, S. Stellmer, P. Soltan-Panahi, S. Döscher,
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