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Yang-Yang and singular diameter critical anomalies arise in exactly soluble compressible cell gas
(CCG) models that obey complete scaling with pressure mixing. Thus, on the critical isochore

ρ = ρc, C̃µ := −Td2µ/dT 2 diverges as |t|−α when t ∝ T − Tc → 0− while ρd − ρc ∼ |t|2β where
ρd(T ) = 1

2
[ρliq + ρgas]. When the discrete local CCG cell volumes fluctuate freely, the Y-Y ratio

Rµ = C̃µ/CV may take any value −∞ < Rµ < 1
2

but ‘anti-correlated’ free volumes are needed
for Rµ > 0. More general decorated CCGs including ‘hydrogen bonding’ water models illuminate
energy-volume coupling as relevant to Rµ.

PACS numbers: 05.70.Jk, 64.60.De, 64.60.F-, 64.70.F-

In 1964 Yang and Yang [1] discovered a serious de-
fect of the standard lattice gas model (say, SLgas),
alias the Ising model, for studying criticality in flu-
ids. The same defect, furthermore, characterizes Landau-
Ginzburg-Wilson or field theory (FT) models. Explic-
itly, consider an upper critical point at which the iso-
choric specific heat CV (T ) diverges as |t|−α as t ≡
(T − Tc) /Tc → 0− with α ' 0.109 in d = 3 dimensions.
Then, if pσ(T ) and µσ(T ) are the pressure and chem-
ical potential on the gas-liquid phase boundary, Yang
and Yang proved CV = C̃p + C̃µ, where C̃p = Tp′′σv and

C̃µ = −Tµ′′σ while v = 1/ρ is the specific volume (and
′ denotes d/dT ). On the critical isochore ρ = ρc one

should thus expect C̃p = Ap/|t|α and C̃µ = Aµ/|t|α.
However, in the SLgas and its usual variants µσ(T ) is

completely analytic. This implies that the Yang-Yang
(Y-Y) ratio

Rµ = Aµ/ (Ap +Aµ) (1)

vanishes identically with only p′′σ diverging! But is this
reasonable? Yang and Yang thought not [1].

This question was finally answered negatively [2, 3]
when careful analysis of data for propane yielded Rµ '
0.56 whereas CO2 data indicated a clearly distinct value,
Rµ ' −0.3 [2–5]. Simulations suggest Rµ ' −0.04 for
a hard-core square-well fluid but Rµ ' 0.26 for the re-
stricted primitive model electrolyte (hard-sphere 1:1) [6].

To accommodate Rµ 6= 0 the traditional scaling theo-
ries for criticality need modification since, like the SLgas,
they entail Rµ ≡ 0. This has been accomplished in what
is now termed complete scaling, an approach that con-
templates a comprehensive set of thermodynamic critical
anomalies associated with a nonvanishing Y-Y ratio [7].
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Thus a remarkable new term is an A2β |t|2β correction to
the diameter of the coexistence curve, ρd = 1

2 [ρliq + ρgas].
Asymptotically close to criticality this term dominates a
long sought [8] but weak A1−α|t|1−α singularity [9, 10]
since 2β ' 0.652 < 1− α ' 0.891 for d = 3 [2, 7].

Such features reflect an underlying gas-liquid asym-
metry that contrasts with the situation for, e.g., the
ferromagnetic-paramagnetic phase transition since the
spontaneous magnetization curve — the analog of the
gas-liquid coexistence curve — displays an obvious sym-
metry upon magnetic field reversal. Thus, rather than
being a technicality, the issue raised by Yang and Yang
addresses a most basic question regarding the precise for-
mulation of scaling for asymmetric fluid criticality [2, 7].

The predictions of complete scaling have been tested
against experiments [4, 5, 9, 10] and simulations [6, 10].
Furthermore, implications for asymmetry at the mean-
field level [9, 11], for surface criticality and inhomoge-
neous systems [12], for criticality in fluid mixtures [13],
for the dielectric constant [14], for the refractive index
[15], and for the osmotic compressibility [16] have been
explored.

Nevertheless, complete scaling remains a phenomeno-
logical theory with no obvious limits on the value of Rµ

and no physical insight regarding the origin, magnitude,
or even the sign of this basic ratio. The extensive class of
exactly soluble compressible cell gas (CCG) models intro-
duced here, however, shows that Yang-Yang and related
critical anomalies arise as soon as local volume fluctua-
tions in fluids are recognized [17, 18].

To describe the CCG models one must note that com-
plete scaling entails three basic scaling fields, t̃, h̃, and
p̃, in which all thermodynamic fields, T , µ, and p, en-
ter (or mix) explicitly [2, 7, 9]. Specifically, if one writes
µ̌ ≡ (µ− µc) /kBT and p̌ ≡ (p− pc) vc/kBT , one needs
to leading order

h̃ = µ̌−k1t−j2p̌, t̃ = t−l1µ̌−j1p̌, p̃ = p̌−k0t−µ̌, (2)

where the nonuniversal coefficients k0, k1, j2, etc., satisfy



2

the relations kBk1 = µ′σc − j2p′σcvc while kBk0 = Scvc
with S being the entropy [7]. Furthermore one finds [2, 7]

j2 = −Aµ/Ap and Rµ = −j2/ (1− j2) , (3)

which implies that the presence of pressure in the or-
dering field, h̃, plays the crucial role in generating a
nonzero Yang-Yang ratio. Indeed, one also obtains
A2β = RµB

2, where the coexistence curve is described
by [ρliq − ρgas] vc ≈ 2B|t|β [7]. But pressure mixing also
leads to A1−α ∼ (l1 + j1).

It transpires (although not apparently noted previ-
ously) that the Second Law implies the restrictions

−∞ < j2 , Rµ < 1 and Ap > 0 . (4)

Explicitly, these follow from (1), (3), and Eq. (3.23) of
[7] stating B = QB (1− j2), while thermodynamics de-
mands CV > 0, B > 0, and QB > 0 [7].

To continue, consider the SLgas interpreted as a con-
tinuum cell model: at each of the N sites of a d-
dimensional lattice of coordination number c there is a
cell of volume v0 that may be empty or occupied by one
particle that moves freely throughout space; but instead
of a normal pair potential, ϕ(ri − rj), particles in adja-
cent cells interact only via a discrete energy ϕmin = −ε0

[19]. Repulsive or excluded volume effects may be taken
into account by supposing that a particle in a cell can
explore only a ‘free volume’, say, v̇0 < v0.

Now to generate a compressible cell gas suppose that
each cell can, individually, assume n discrete values,
0 < vk 6 v0, but with distinct free volumes v̇k > 0 if
occupied (or, more generally, v̈k if doubly occupied, etc.).
To analyze such a model one must, in place of a standard
canonical or (N , V , T ) ensemble, employ a great grand
canonical or (µ, p, T ) ensemble [20]. The partition func-
tion then embodies sums over particle numbers, energy
levels, and volume fluctuations with corresponding Boltz-
mann factors eµ̄N , e−β̄E , and e−p̄V , where β̄ = 1/kBT ,
p̄ = β̄p and µ̄ = β̄µ−ln(ΛdT /v0) with ΛT = ~

√
2π/mkBT

for N particles of mass m and overall energy E.
In the simplest models, say, CCG0, the free volumes

v̇k 6 vk fluctuate independently. One then easily finds
[21] an exact analytic mapping into the corresponding
SLgas. Specifically, in terms of the isobaric volume-
fluctuation sums

Slm (p̄) = n−1
n∑

k=1

vlkv̇
m
k exp (−p̄vk) , (5)

and the standard Ising variables [22] h = H/kBT , K =
J/kBT , and f̄ = −F/kBT , one has

2h = µ̄+ 1
2cβ̄ε0 + ln [S01 (p̄) /v0S00 (p̄)] , (6)

4K = β̄ε0 , f̄ = − ln [S00 (p̄)] + 1
8cβ̄ε0 − h , (7)
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FIG. 1: (Color online) Yang-Yang ratios Rµ and anomalies
for simple compressible cell gas models (CCG0) showing CV
(bold dashed), C̃µ (bold solid, red), and C̃p (thin solid, blue)
for ρ = ρc, and the reduced diameters, ∆ρd = (ρd − ρc)/ρc
(thin solid), and their |t|2β components (bold dashed, red)
with (a) n = 3, v2 = θv1, v3 = v1, w = 0 (point particles)
and θ = 5 [while θ = 50 gives Rµ = −1.23] and (b) n = 2,
v2 = θv1 and, for highly compressible particles, v̇2 = v̇1/θ
and θ = 1/5 [while θ = 1/50 yields Rµ = 0.46].

which relations effectively parallel (2).
If, as we may surely accept, Ising models for d = 2 and

3 obey simple scaling, the associated CCG models must
exhibit complete scaling in all its aspects [2, 7]. But may
all the values allowed by (4) be realized in reasonable
models? And might the singularity in µ′′σ dominate so
that |Aµ| > Ap and can one have Rµ > 1

2? For CCG0

models (6) and (7) lead to

j2 = ρc
(
S11/S01 − S10/S00

)
c

= 〈∆v∆v̇〉c /vc 〈v̇〉c , (8)

where ∆v = v − 〈v〉, etc., while
〈
vlv̇m

〉
= Slm/S00 [21].

Now, suppose the free volumes are fixed, v̇k = v0 (all
k), so that ∆v̇ ≡ 0. This recaptures j2 = Rµ = 0, the
usual SLgas or FT result, and so demonstrates clearly
that the origin of the Y-Y anomaly lies in the fluctuating
free volumes available to fluid particles.

More realistically, suppose that the particles have a
fixed “core volume” w > 0 so that v̇k = vk −w > 0. Via
(8) this yields j2 ∝

〈
∆v2

〉
> 0 and hence, using (3) and

(4), Rµ is always negative: see Fig. 1(a) computed with
3D Ising data [22]. Note that large core volumes w rela-
tive to vmin (or broad 〈v̇k〉 distributions) yield arbitrarily
large values of −Rµ. For all such models, the diame-
ters ρd (T ) close to Tc must curve up to higher densities:
see Fig. 1(a). This is contrary to typical observations
[10] which, however, may be dominated numerically by
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Ψ++ = S00(p̄) + S01(p̄) e2β̄ε0+µ̄/v0

Ψ+− = S00(p̄) + S01(p̄) eβ̄ε0+µ̄/v0

Ψ−− = S00(p̄) + S01(p̄) eµ̄/v0

FIG. 2: States of a CCG for a lattice of primary cells (squares)
decorated by secondary cells (diamonds) with, as indicated,
decorating factors, expressed using the notation (5), that de-
pend on the occupancy of the primary cells [25].

the |t|1−α singularity; but that vanishes in CCG0 mod-
els since 4K = β̄ε0 in (7) implies j1 = l1 = 0, i.e., no
mixing of p and µ into the T -scaling field t̃. This feature
remains in augmented models in which a particle in cell k
acquires a potential energy εk requiring a further factor
exp(−β̄εk) in (5).

To realize positive Rµ in CCG0 models, requires j2 < 0
and so, by (8), free volumes v̇k that are anti -correlated
with the vk. This may be realized for ‘highly compress-
ible’ particles that, e.g., when a cell volume v1 decreases
by a factor θ < 1, the core volume decreases more rapidly
so that the new free volume v̇2 = v2 − w2 exceeds v̇1 by,
say, the inverse θ−1 > 1 [23]. Even for n = 2 this yields
Rµ > 0 while Rµ = 1

2 − O(θ) when θ → 0, implying

C̃p & C̃µ as T → Tc: see also Fig. 1(b).

A natural extension of the CCGs is to follow Naya [24]
and “decorate” each bond of a given lattice with an extra
site; indeed, as established long ago [25], this approach
can be greatly extended. Then the bond sites or, more
generally, secondary cells of such a decorated CCG may
entail an arbitrary number of particles, cell volumes, en-
ergy levels, external fields, etc., while exact solubility is
retained [25]. Likewise, the secondary parameters may
vary independently or, more generally, be coupled to the
occupancy of the primary cells. All the needed infor-
mation is then contained in appropriate decorating fac-
tors, Ψ++, Ψ+−, and Ψ−−, which embody sums over the
Boltzmann factors of the secondary cells [25]. See Fig. 2

Ψ+− = qΨ−− = 1

−ε0 −(ε0 + δε), v+

Ψ++ = q (q − 1) + q eβ̄δε−p̄v+

FIG. 3: Decorating factors for the S3D water model [27], with
‘H’ indicating the formation of a hydrogen bond with a lower
energy but a free volume increase of v+.

for the simplest case in which the free volumes, etc., are
the same for primary and secondary cells while attractive
interactions of magnitude ε0 are assumed.

In general, for simple occupancy, the transformation
in terms of the decorating factors yields [21]

2h = µ̄+ 1
2cβ̄ε0 + ln

[
S01Ψ

c/2
++/v0S00Ψ

c/2
−−
]
, (9)

4K = β̄ε0 + ln
[
Ψ++Ψ−−/Ψ

2
+−
]
, (10)

f̄ = − ln
[
S00Ψ

3c/8
−− Ψ

c/4
+−/Ψ

c/8
++

]
+ 1

8cβ̄ε0 − h , (11)

which indicates that extra contributions arise from Ψ++,
Ψ+−, and Ψ−−; from these relations, in addition to
“pressure mixing”, i.e., j2 6= 0, one can derive nonva-
nishing expressions for j1 and l1 in (2).

Naturally it is not necessary to decorate every bond
or to decorate each one in the same way! Thus one may
readily construct layered or anisotropic models. Further-
more, the various decorating factors entering a given pri-
mary cell can be chosen to couple in special ways: e.g.,
as used for Ising antiferromagnets exactly soluble in an
arbitrary magnetic field [26].

Another valuable extension of the decoration approach
is to introduce energy-volume coupling. As illustrated
in Fig. 3, this may not need “occupiable” secondary
cells! Rather, by introducing appropriate decorating fac-
tors, one can solve in the critical region (and in general)
what may be called “S3D” models [27], devised specif-
ically to handle the anomalous thermodynamic proper-
ties of water (and D2O) [28] by recognizing the role of
hydrogen bonds in generating expanded and lower en-
ergy, transient ice-like structures in the fluid. To formu-
late the model one envisages [27] that each H2O molecule
may take q distinct “orientations”, or “configurations”,
or, less specifically, microstates. When adjacent primary
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cells — squares in Fig. 3 — are both occupied, one postu-
lates that q of the q2 joint orientations (or microstates)
form a hydrogen bond. Further, such a bond will be
awarded an energy lower by δε and gain a free volume
greater by v+. Despite their depiction in Fig. 3, it is also
clear that the “secondary cells” serve only to identify the
bond!

From the decorating factors in Fig. 3 one finds, using
(9)-(11) with n = 1 and v1 = v̇1 = v0 in (5),

j2 = 1
2cρcv+ e

β̄cδε−p̄cv+/ (q − 1 + eβ̄cδε−p̄cv+), (12)

while j1 ∝ v+ but l1 vanishes [21]. Evidently, then, Yang-
Yang anomalies and nonzero Rµ can arise even when
single particles may explore only a fixed free volume, v0,
provided the interaction energy of particles is sensitive to
free-volume changes. Since q ≥ 1 the result (12) means
j2 > 0 so that, by (3), only negative values of Rµ can ap-
pear. One may conclude that correlation of lower energy
with increased free volume will yield Rµ < 0.

Conversely, to generate positive values of Rµ one may
simply change the sign of v+ (which also serves to corre-
late energy with volume). However, to maintain positive
free volumes for all particles — and thus a proper ideal -
gas limit at low densities — one may argue that each pri-
mary cell receives inputs from c bonds while each bond
can, in essence, share its reduced free volume between
its two (neighboring) primary cells. Thus one must re-
quire |v+| < 2v0/c; nevertheless, (12) remains valid for
j2. However, the same bound, Rµ < 1

2 , as found for
CCG0 models, is still valid. To generate simple models
that allow larger values of Rµ — as found experimentally
for propane [2, 3]— remains an open task.

A natural further question is: “How about ‘Compress-
ible Cell Models’ with continuously compressible cells?”
Such models may be constructed along the lines set out
following Eq. (4); but rather than introducing n discrete
‘compressed cells’ one may contemplate a distribution.
Then the sum in Eq. (5) is replaced by an integral, say,
over a normalized Gaussian distribution; the width of the
Gaussian sets the scale of allowed local volume fluctua-
tions. Recall, again, that it is these fluctuations in local
volume that — as now clear from the CCG models — lie
at the root of Yang-Yang anomalies.

On the other hand, when it comes to off-lattice or
continuum systems one must rely on careful simulations
[6, 10]. These have taught us that decreasing the width
of the attractive well (e.g., in a hard-core square-well
fluid) increases the asymmetry of coexistence curves to
which the Y-Y anomalies contribute. Coulombic interac-
tions (in studies of the RPM, i.e., “restrictive primitive
model,” electrolyte) have a similar effect. But a concrete
benefit of our (in effect) exactly soluble (even if some-
what artificial) CCG models is that such trends can be
tested individually, analitically, and quantitatively — as
we sketched above for the S3D model [27]. Thus one may

contemplate studies of anisotropic interactions, particu-
lar many-body forces, etc., and hope to gauge explicitly
the degree to which the Y-Y anomalies respond.
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