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In this letter we study the effect of time-reversal symmetric impurities on the Josephson super-
current through two dimensional helical metals such as on topological insulator surface state. We
show that contrary to the usual superconducting-normal metal-superconducting junctions, the sup-
pression of supercurrent in superconducting-helical metal-superconducting junction is mainly due
to fluctuations of impurities in the junctions. Our results, which is a condensed matter realization
of a part of the MSW effect for neutrinos, shows that the relationship between normal state conduc-
tance and critical current of Josephson junctions is significantly modified for Josephson junctions
on the surface of topological insulators. We also study the temperature-dependence of supercurrent
and present a two fluid model which can explain some of recent experimental results in Josephson
junctions on the edge of topological insulators.

The helical electronic states on the boundary of topo-
logical insulators (TIs)[1, 2] present unique opportunity
to experimentally realize novel quantum condensed mat-
ter phenomena such as quantum anti-localization[1–3].
On the other hand, they resemble relativistic massless
fermions and provide a platform to realize phenomena
previously studied in high energy physics, such as axion
electrodynamic [4] and supersymmetry [5, 6], in the con-
densed matter systems. The possibility of inducing su-
perconductivity in surface states of TIs through proxim-
ity effect [7, 8] and theoretical predictions of presence of
Majorana zero-mode [9] in Josephson junctions through
TI surface states [10, 11] motivated many experimen-
tal studies of such Josephson junctions and led to many
puzzling results [12–18] which were not observed before
in superconducting-normal metal-superconducting (SNS)
Josephson junctions [19].

Contrary to the normal metallic phase, in the SNS
Josephson junction the supercurrent is carried with no
applied field. It is instead generated by the variation of
phase of the superconducting condensate. As a result
the mechanism through which the impurities in the SNS
junction affect the supercurrent is different from their
effect on normal state current. An important and non-
trivial result in this regard, is that the critical supper-
current in SNS junctions is proportional to the normal
state conductivity [20–23]. It has been shown that in
SNS junctions the back-scattering of electron and holes
in the normal region is the main mechanism affecting the
suppercurrent and these processes leads to proportional-
ity of critical current and normal state conductivity[21].
Owing to the strong correlation between spin and mo-
mentum in the helical metals, such as surface states of
TIs, back-scattering by non-magnetic impurities is pro-
hibited. As a result the effect of impurities on the super-
current should be through other mechanism which is not
explored before.

In this letter we show that non-magnetic impurities can
affect the supercurrent through forward scattering pro-
cesses which resemble a condensed matter version of a

part of the Mikheyev-Smirnov-Wolfenstein (MSW) effect
for neutrino oscillations [24–27]. There are two ingredi-
ents to MSW effect. First, through interaction of the
neutrinos with matter, their phase velocity is modified
and they effectively acquire a refractive index. The re-
fractive index for electron-neutrinos is different from that
for other flavors due to charged current interactions with
matter. The resulting difference in the phase of the wave
functions modifies the neutrino mass-eigenstates in mat-
ter, and hence the oscillations between different flavors
(see supplementary materials[28]). It is crucial for the in-
teraction of Neutrinos with matter to be time-dependent
in order to modify their phase velocity. This is to some
extent similar to the interaction of light with matter
where the time dependence of the interaction leads to
change of phase velocity of the light and deviates the in-
dex of refraction for different materials from that of the
vacuum. We will show that similarly in superconducting-
helical metal-superconducting Josephson junctions the
forward scattering of helical electronic states by impu-
rity potentials, which are naturally time dependent due
to quantum and thermal fluctuations in the locations of
the impurities, lead to the modification of the phase ve-
locity of the Andreev states. This effective ‘refractive
index’ for Anreev states means that the optical length of
the junction (defined via the phase of the wave function)
is larger than the geometric length. The modification of
the phase modifies (via matching conditions) the energy
eigenvalues of the Andreev states which control the mag-
nitude of the supercurrent. The second part of MSW
effec is a resonance effect which can enhance the mixing
of flavors in matter, even up to the maximal mixing. For
us, we have only one flavor to consider, so the situation
is simpler and there is no resonance part.

Our results, in addition to presenting this novel
paradigm in TIs, can be used to interpret the measure-
ments on TI Josephson junctions which are currently the
focus of many experimental studies [12–18]. This general
result, which should hold in situations with electrons with
strong spin-orbit coupling, impacts their contributions to
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physical phenomena.
The low-energy effective Hamiltonian of TI surface

states reads as Hs = vF σ ·k where vF is the fermi veloc-
ity and σ = (σx, σy) are the Pauli matrices in the basis
(ψ↑, ψ↓), with ψσ being the electronic state with spin σ
localized on the surface of the TI. The low-energy effec-
tive Hamiltonian describing a Josephson junction on the
surface of the TI, with supercurrent along x̂, is given by
[29]

H = (−ivF∇ · σ − µ) τ3 + ∆R(x)τ1 + ∆I(x)τ2, (1)

which acts on the superconducting particle-hole state(
ψ↑, ψ↓, ψ

†
↓,−ψ

†
↑

)T
. Here ∆R(x) and ∆I(x) are real and

imaginary parts, respectively, of the induced supercon-
ducting gap ∆ = ∆R+ i∆I . As for the matrix structure,
σi act on physical spin space whereas the τi act on the
superconducting particle-hole space. As the Hamiltonian
in (1) is invariant under translation along ŷ, the momen-
tum ky in this direction is conserved. The low-energy
Andreev states in the junction thus correspond to ky = 0
and kx close to the two fermi wave vectors, kx = µ

vF
for

σx = 1 and kx = − µ
vF

for σx = −1. Notice that since
σx commutes with Hamiltonian (1) we can decouple the
low-energy effective Hamiltonians into two independent
sectors corresponding to electron-hole states close to right
or left fermi points. Here we will focus on one of the ef-
fective Hamiltonians, but the other independent one can
be similarly studied. Since we are aiming for the effect
of temporal fluctuations it is more efficient to use the
corresponding 1 + 1-dimensional action

S =

ˆ
dxdt Φ̄ (x, t)

[
iτ1Dt + τ2Dx + M̃ (x)

]
Φ (x, t)

(2)
where ΦT (x, t) =

(
φ↑ (x, t) ,−φ†↓ (x, t)

)
and φσ (x, t) =

ψσ (x, t) e∓ikF x, with σ =↑, ↓, are the fermionic field op-
erators for excitations close to the right or left Fermi
points. Dµ = ∂µ − i e τ3Aµ is the covariant derivative.
Notice that (2) is of the standard form of a Dirac action
Φ̄(iγµDµ + M̃)Φ if we identify γ0 = τ1, γ1 = −iτ2, γ5 =
τ3. Further, in (2), Φ̄ (x, t) = Φ† (x, t) γ0 = Φ†(x, t) τ1
and M̃ (x) = ∆R(x)τ0 + i∆I(x)τ3. The Fermi velocity
has been set to 1 by scaling x, or equivalently, the mo-
mentum kx. The effect of charged impurities is captured
by A0 = V (x − a(t)) where a(t) identifies instantaneous
position of the impurity. As we will see below, in order
to capture the effect of impurities on the supercurrent
in the junction, we should consider the natural fluctu-
ations in the position of the impurity. For small fluc-
tuations a(t) = a0 + ξ(t), the impurity potential reads
as V (x − a(t)) ≈ V (x − a0) + ∂xV (x − a0) ξ(t). As
we will show below, the impurities can only affect the
supercurrent as a result of their temporal fluctuations.
We would like to note that such treatment of impuri-
ties and its effect on superconductivity in normal metals

have been considered long before [30]. But here we show
that as a result of helical band structure of the surface
states of the TIs, the temporal fluctuations are the sole
mechanism through which impurities can affect the su-
percurrent. The action, including the effect of fluctuating
impurities, is S = S0 + Sint + Sosc with

S0 =

ˆ
dxdt

[
Φ̄ (x, t)

(
iτ1∂t + τ2∂x + M̃ (x)

)
Φ (x, t)

−V (x− a0) Φ̄ (x, t) iτ2Φ (x, t)
]

Sint =

ˆ
dxdt ∂xV (x− a0) Φ̄ (x, t) iτ2Φ (x, t) ξ(t)

Sosc =
1

2
MI

ˆ
dt ξ̄(t)

(
− ∂2

∂t2
− ω2

)
ξ(t) (3)

Since we are interested in localized impurities, both the
impurity potential V (x − a) and the resulting electric
field E(x) = ∂xV (x − a) are localized in space and the
dynamics of the impurities are captured by the harmonic
oscillator action Sosc (MI and ω are the mass and the
harmonic oscillation frequency of the impurities). The
electron-impurity coupling is given by Sint; it generates
a self-energy correction in S0 (see supplementary mate-
rials), leading to an effective action of the form

S̄ =

ˆ
dxdt

[
(1 + Σ1(x)) Φ̄

(
iτ1∂t + M̃ (x)

)
Φ

+ Φ̄ τ2∂xΦ + Φ̄ M̃(x)Σ2(x) Φ
]

+

ˆ
dxdt V (x− a0) Φ̄ iτ2 Φ

(4)

To the lowest nontrivial order in perturbation theory, the
self-energies can be calculated as Σ1(x) ≈ e2E2(x)

2πω2MI
R and

Σ2(x) ≈ e2E2(x)
2πω2MI

R
[
log( 2ω

MI
)− 1

]
where R is the length

scale over which E(x) = −∂xV (x − a) is non-zero (see
supplementary materials). What is important for us is
not so much the specific formulae for these self-energies,
but that the general form of the effective action is as given
in (4), with the self-energies as corrections concentrated
around the impurities.

It is important to note that the modification due to Σ1

does not affect the spatial derivative term for the elec-
trons. This is because the oscillator variable ξ(t) does
not have a spatial dependence. Thus although the free
fermion action Φ̄(iγµ∂µ + M̃)Φ has a Lorentz-type sym-
metry (albeit with vF in place of the speed of light c)
the interactions with impurities, and hence corrections,
do not respect this symmetry. As a result the temporal
and spatial derivative terms in (4) will be renormalized
differently, thus affecting the phase velocity of Andreev
states. This is similar to neutrinos or light interacting
with matter for which also, the time-dependence of the
interactions leads to deviation of their refractive index
from that of the vacuum.
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The general result is that the effect of fluctuating im-
purities appear as renormalization of the phase velocity
of Andreev states and of the size of superconducting gap
in the region where the electric field of the impurity po-
tentials are present. The change of phase velocity can be
viewed as a “refractive index" for the electron resulting
in an additional phase for the wave functions as the ef-
fective “optical length". This will be the essence of how
the Andreev states are modified.

It is well known that for massless particles, propagat-
ing with speed c in vacuum, the primary effect of interac-
tions is to generate a refractive index rather than a mass
(which is usually forbidden for symmetry reasons). This
effect is also obtained for massive particles in the ultra-
relativistic limit. Our argument is that, for the surface
states in a TI as well, which have a Lorentzian symmetry
(with c → vF ), a refractive index is precisely what we
should expect as the primary effect of interactions.

The Andreev states are determined using the effective
Schrödinger equation acting in two-component space of
superconducting particle-hole space which results from
the action in (4):

− [(i v̄ ∂x + V (x− a0)) τ3 + ∆Rτ1 + ∆Iτ2] Ψ(x) = EΨ(x).
(5)

For constant ∆, the two independent eigenstates are
Ψ±E(x) = eiW

±(x) η±(E,∆), where

η+(E,∆)T =
1√
2E

[√
E + vFκ , −∆/

√
E + vFκ

]
η−(E,∆)T =

1√
2E

[
−∆∗/

√
E + vFκ ,

√
E + vFκ

]
W±(x) =

´ x
0
du V (u−a0)±vF κ

v̄(u) , κ =
√
E2 −∆2 /vF and

v̄(x) = vF /(1 + Σ1(x)) is the effective phase velocity of
the Andreev states .

To model the Josephson Junction, we consider the
stepwise variation of ∆(x) in three regions x < 0 (re-
gion I), 0 < x < xp (region II) and x > xp (region
III) as shown in Fig. 1. The eigenstates can be ex-

Topological Insulator

Δ eiΦoΔ 

Xp0

Figure 1. Superconductor-helical metal-superconductor
Josephson junction. The superconductivity is induced in the
regions of helical metal (TI surface states) below the super-
conducting electrodes (red regions) with corresponding gap
size ∆ and the phase 0 for x < 0 and φ0 for x > xp. Charged
impurities are considered in the region 0 < x < xp.

pressed in each region as the superposition of Ψ±E(x) as
Ψi(x) = AiΨ+

E(x)+BiΨ−E(x) where i = I, II and III, cor-
responding to the three regions. We define the transfer

matrices T̂B(E,∆) =
√

1
2 + κvF

2E

[
1 − ∆∗

E+κvF
− ∆
E+κvF

1

]
and T̂n(x) = eiφI(x)

[
ei〈k〉xx 0

0 e−i〈k〉xx

]
, where 〈k〉x =

E
x

´ x
0

du
v̄(u) is the averaged wave vector in the normal (TI)

region of the junction and φI(x) =
´ x

0
V (u−a0)
v̄(u) du is the

phase resulting from the static impurity.The boundary
conditions which determine the spectrum of the states
in the junction are ΨI(0

−) = ΨII(0
+) and ΨII(x

−
p ) =

ΨIII(x
+
p ). The S-matrix for the junction must relate the

incoming and outgoing states as
[
AIII

BI

]
= S

[
AI

BIII

]
;

this S-matrix can be written in terms of T̂J(E,∆, φ0) =
T̂B(E,∆)−1 T̂n(xp)

−1 T̂B(E,∆eiφ0) as

S =
1

T̂J(E,∆, φ0)11

[
1 −T̂J(E,∆, φ0)12

T̂J(E,∆, φ0)21 e−2iφI

]
(6)

The supercurrent I in the junction can be derived us-
ing the well-known relationship between the Josephson
current of the junction and the spectrum [21], namely,

I = I1 + I2 + I3

I1 = − e
~
∑
n

tanh (En/2kBT )
dEn
dφ

I2 = −2ekBT

~

ˆ ∞
∆

dE ln [2 cosh (E/2kBT )]
∂ρ(E, φ)

∂φ

I3 =
e

~
d

dφ

ˆ
dx|∆(x)|2/g

I1 is the contribution from the discrete spectrum of in-
gap states and I2 is from the continuum of states with
energy above the gap with density of states ρ(E, φ) for
the one spin state at each Fermi point. In the third com-
ponent I3, g is the interaction constant of BCS theory.
I3 vanishes for the phase independent gap and will be
ignored in this letter.

For the states with energy E < ∆, the amplitude of

outgoing states vanishes which give S
[
AI

BIII

]
= 0. Using

the explicit form of S-matrix given in (6), we get the
following equation determining the in-gap energies:

cos−1(En/∆) +
En
v
L+

φ0

2
= nπ, n ∈ Z (7)

where L =
´ xp

0
dx (1 + Σ1(x)) is the effective length of

the junction as modified by fluctuations of the impurity.
This is the new “optical length" of the junction. To check
if the mechanism discussed above can have a sizable im-
pact on the critical current, we now estimate Σ1(x).

Assuming the local potential is due to random charge
impurities in the TI, the estimated values of relevant
properties are: the density of impurities ∼ 1019 cm−3
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[31], screening length ∼ 20 nm [32], bulk dielectric con-
stant ∼ 100 [33], impurity mass ∼ 10−27 kg and oscilla-
tion frequency of typical localized impurities ∼ 200 cm−1

[34]; this leads to Σ1 ≈ 0.25, implying a non-negligible
impact on the critical current. The phase φI has can-
celled out in (7) confirming that static impurities have no
effect on the energy of in-gap Andreev states. The effect
of impurities is only through their dynamical fluctuations
which leads to the finite self-energy Σ1(x) and modifies
Fermi velocity. The effect on the energy eigenvalues is
most vividly illustrated by considering states with En �
∆, in which case we get En ≈ (v/2L)

[
2π(n+ 1

2 )− φ0

]
.

The increase in L implies that En and ∂En/∂φ0 are de-
creased relative to the case with no impurities. More
generally, defining Θn = En

v L+φ0/2−nπ, the supercur-
rent associated with each in-gap state reads as

In(φ0) = − e
~
∂En
∂φ0

=
e |∆|
2~

[
sin(Θn)

1 + sin(Θn)L|∆|/v

]
(8)

As a function of Θn, this has a maximum at Θn = π/2, so
that the critical current is Icrit = (e|∆|/~)(1+L|∆|/v)−1.
The condition Θn ≈ π/2 is actually obtained for modes
of very low energy En � |∆|. It is important to note
that by that the suppercurrent generated by in gap states
decreases by increasing L which shows that impurities
clearly affect the supercurrent.

For the states above the gap, the density of states
is given by the Krein-Friedel-Lloyd formula ρ(E) =

1
2πi

∂
∂E (ln detS) [35]. Using (6) we get

detS = e−iφ0
1− β2

E cos2(ΘE)[√
1− β2

E cos(ΘE)− i sin(ΘE)
]2

where ΘE = E
v L+ φ0/2 and βE = ∆

E . The supercurrent
due to above-the-gap states then simplifies to

I2 =
e

2π i ~

[ˆ ∞
∆

dE tanh (E/2kBT )
∂ (ln detS)

∂φ0

]
−ekBT

π~
ln [2 cosh (∆/2kBT )] (9)

We would like to emphasize two important features of
the supercurrent contribution from states with energy
above the superconducting gap: 1) For low tempera-
tures T � ∆, I2 is only weakly T -dependent through
the temperature dependence of superconducting gap ∆.
At higher temperatures, the thermal phase fluctuations
can further reduce the supercurrent which is beyond the
scope of our letter. 2) I2 is also only weakly dependent
on L, i.e, only weakly sensitive to impurities.

To elucidate the second point, we first note that the
second term in (9) is independent of L. For T � ∆,
tanh (E/2kBT ) ∼ 1. The integrand in the first term in
(9) has two types of dependence on E. One is a periodic
dependence, with period ~v/L due to cos(ΘE), and the
other is a decaying dependence, of the form ∆2/E2 for

Figure 2. Temperature dependence of critical current (in units
of e∆

~ ). Black solid curve corresponds to total critical current,
the blue dashed curve is the contribution from above-the-gap
leaky Andreev states and red dashed-dotted line is the con-
tribution from in-gap Andreev states.

large E. For the effective junction length L larger than
~v/∆, the oscillatory dependence is much faster than the
decay rate and so can be averaged over ΘE . (This may
be viewed as an application of the Riemann-Lebesgue
lemma.) As a result, the dependence on L will be elimi-
nated and I2 will not be seriously affected by impurities
even when fluctuation effects are included.

In conclusion we have shown that the supercurrent in
Josephson junctions with helical metals, such as on the
surface of three-dimensional TIs, is affected by impuri-
ties through their temporal fluctuations. However, this
applies primarily to the supercurrent generated by in-
gap Andreev states. The supercurrent carried by the
states above the gap will not be seriously affected by
impurities. Based on our results, the supercurrent in
the Josephson junctions on the surface of TIs can be in-
terpreted as a superposition of two contributions, one
which is strongly temperature-dependent and also sensi-
tive to the impurities in the junction and one which is
only weakly temperature-dependent and not sensitive to
the impurities, see Fig. 2. Given new advances in con-
trolling the level of disorder in TIs [36, 37], these results
will be useful in analyzing many of the experimental re-
sults on Josephson junctions made on TIs. For example,
our analysis is consistent with the experimental results in
[12, 13]; whether different impurities concentration could
affect the critical current in Josephson junctions on TI
was the main missing ingredient in the theoretical model
used to interpret those results. In fact, our work may be
considered as further substantiating the interpretation,
presented in [12], in terms of two types of supercurrent
contributions. Similar behavior have been observed more
clearly in samples with very low bulk conduction[12].
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