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We show that boundaries of 3D weak topological insulators can become gapped by strong interactions while
preserving all symmetries, leading to Abelian surface topological order. The anomalous nature of weak topolog-
ical insulator surfaces manifests itself in a non-trivial action of symmetries on the quasiparticles; most strikingly,
translations change the anyon types in a manner impossible in strictly 2D systems with the same symmetry. As
a further consequence, screw dislocations form non-Abelian defects that trap Z4 parafermion zero modes.

Introduction. Electronic topological insulators [1–5] dis-
play numerous exotic properties already at the single-particle
level, most famously protected surface metallicity. Much of
the richness in these systems emerges from the interplay be-
tween symmetry and topology. Recently interactions among
surface electrons have been found to further enlarge the pos-
sibilities. In a strong topological insulator (STI) the surface
spectrum for weakly interacting electrons obeying time rever-
sal and charge conservation symmetry features a single Dirac
cone. Remarkably, strong interactions can fully gap the STI
surface without violating symmetries [6–9] (as anticipated
earlier [10]). The symmetrically gapped phases realize non-
Abelian topological order and can be viewed as descending
from novel gapless states [11–13]. Similar conclusions hold
for bosonic topological insulators [14], topological supercon-
ductors [15], and topological crystalline insulators [16]. (Not
all topological systems, however, admit a symmetric gapped
boundary [17].)

We explore for the first time the fate of strongly corre-
lated weak topological insulator (WTI) surfaces. A WTI may
conveniently be decomposed into a stack of quantum spin
Hall (QSH) insulators [1–3] with electrons from the helical
edges tunneling between layers; see Fig. 1(a). Provided the
system preserves time reversal T , charge conservation, and
layer translation symmetry Ty , the non-interacting WTI sur-
face hosts two massless Dirac cones at distinct momenta [18].
These systems comprise ideal physically relevant [19] settings
where one can controllably explore strong correlation effects
that produce surface topological order. The additional sym-
metries present here compared to the STI surface enrich the
topological order that we identify in subtle ways and yield an
interesting interplay with lattice defects.

General considerations. Three considerations are useful
for anticipating the topological order that emerges when in-
teractions gap the WTI surface without violating these sym-
metries. First, on very general grounds the topological order
must be anomalous, i.e., forbidden in strictly 2D isosymmet-
ric systems. To see this consider the thickened torus of WTI
depicted in Fig. 1(b), and gap the interior surface by interac-
tions but leave the exterior gapless. Upon shrinking the torus’s
thickness a strictly 2D system emerges as in Fig. 1(c). If the

gapped surface was non-anomalous, one could simply strip
away the topological order, leaving a symmetric 2D system
with an ‘impossible’ band structure [20]—a contradiction.

The second consideration regards a domain wall separat-
ing the topologically ordered state from a ferromagnetically
gapped surface region. The magnetized region carries a non-
zero thermal Hall conductivity and thus the domain wall must
host gapless modes. In the STI case the thermal Hall conduc-
tivity would be half-integer (in units of π2k2

BT/3h), just like
the electronic Hall conductivity (in units of e2/h); this im-
plies that the gapless mode’s central charge must also be half-
integer, necessitating a non-Abelian topological order. By
contrast, the two Dirac cones present for the WTI imply an
integer central charge, suggesting an Abelian minimal topo-
logical order.
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FIG. 1. (color online) (a) Weak topological insulator built from quan-
tum spin Hall layers. Interlayer tunneling yields two symmetry-
protected surface Dirac points at momenta (qx, qy) = (0, 0) and
(0, π). (b) Thickened torus of weak topological insulator with sym-
metric topologically ordered interior and gapless exterior. (c) Two-
dimensional limit where the thickness shrinks to zero. The topologi-
cal order must be anomalous; otherwise one is left with an ‘impossi-
ble’ 2D band structure. This very general argument applies broadly
to 3D symmetry-protected topological phases.

The third consideration results from viewing the WTI as a
stack of QSH insulators. Any finite stack may be viewed as
two dimensional, with an even-odd effect: the system forms
a 2D topological insulator with an odd number of layers but
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FIG. 2. (color online) (a) Weak topological insulator surface dressed
with 2D topologically ordered ‘plates’. (b) Limit of a single QSH
layer and setup for discussing weak symmetry breaking.

a trivial 2D insulator otherwise. Since the 2D topological in-
sulator edge cannot be gapped without breaking T or charge
conservation, this even-odd effect should also appear when in-
teractions gap the stack’s surface to form topological order in
the limit of infinitely many layers.

Gapping procedure. We now put this discussion on firmer
footing. To facilitate gapping the WTI we imagine pattern-
ing the surface with 2D topologically ordered ‘plates’ that re-
spect the same symmetries as the WTI surface. In the deco-
rated structure the plates simply bridge adjacent QSH layers
as shown in Figure 2(a). Crucially, this does not affect the
bulk of the WTI, which endows the surface with exactly the
same anomaly as in the absence of the plates. Consequently,
any phase accessed in this way can equally well arise with-
out such decoration. Similar approaches have been used in
Refs. [11, 21] for STI and topological superconductor sur-
faces.

The decorated structure contains interfaces (enumerated by
the integer y) where a helical QSH mode meets two sets of
gapless edge states from the adjacent plates, one from above
and one from below. We judiciously select the plates such
that (i) local interactions within a given interface can remove
all gapless modes without breaking any symmetries and (ii)
the surface topological order with minimal degeneracy on a
torus appears. Note that time-reversal symmetry constrains
the latter degeneracy to be the square of an integer [22].

The interfaces to be gapped are conveniently described
within the standard K-matrix formalism [23] by a matrix K
and charge vector Q, which specify the statistics and charges
of low-energy fields, along with a vector X that distinguishes
Kramers singlets from doublets [22]; see Supplementary Ma-
terial [24] for a brief review. More precisely, we have

K =

Kh 0 0

0 Kp 0

0 0 −Kp

 , Q =

qhqp
qp

 , X =

χhχp
χp

 (1)

where the ‘h’ and ‘p’ subscripts indicate quantities for the
helical QSH modes and plates, respectively. For the QSH
sector Kh = σz (here and below σa denote Pauli matri-
ces), qh = (1, 1), and χh = (0, 1). For the plates, time
reversal demands an even-dimensional Kp. We assume the

smallest two-dimensional Kp, which can be either fermionic
or bosonic. We focus on the latter since we find that the
fermionic case does not permit time-reversal-invariant gap-
ping of the interface. The bosonic case allows two distinct
possibilities: (i) Kp = mσx, qp = (0, 2), χp = (r, 0) or
(ii) Kp = mσz , qp = (2, 2), χp = (r, 0) with m an even
integer and r = 0 or 1. Either possibility yields a minimal
charge excitation of e∗ = 2/m. By the criterion of Ref. [22]
the interface may be symmetrically gapped when 1

e∗χ
TK−1Q

is even. It follows that the smallest possible value ofm is four,
and that the value of r does not affect the interface’s gappa-
bility. Hereafter we set r = 0 for concreteness and focus on
Kp = 4σx; the gapped phase obtained with this choice simply
relates to STI surface topological order [24].

To specify the gap-opening interactions we introduce low-
energy fields describing a given interface y. Right/left-moving
QSH electron operators are ψR/L,y ≡ eiϕR/L,y . We use sub-
scripts + and − to denote fields from the adjacent upper and
lower plates. Operators a±,y ≡ eiφa±,y and d±,y ≡ eiφd±,y

then respectively create charge-e/2 and neutral excitations
with time-reversal properties a±,y → a±,y and d±,y → d†±,y .
These quasiparticles have bosonic self-statistics but exhibit
mutual statistics eiπ/2, implying that a4

±,y and d4
±,y represent

local bosons. Interactions

(ψRψL)
2

(a−a+)
4

+H.c. ∼ cos 4θc (2)(
ψ†RψL

)2 (
d†−d+

)4

+H.c. ∼ cos 4θs (3)(
a†−a+

)4

+H.c. ∼ cos 4θn, (4)

are therefore physical. (We suppress y-dependence whenever
unneeded.) The fields θc,s,n defined above mutually commute
and can therefore be simultaneously pinned to gap the inter-
faces. Moreover, the interactions preserve both T and charge
conservation. Thus uniformly condensing 〈eiθc,s,n〉 6= 0 re-
spects all symmetries; for details see the Supplementary Ma-
terial [24].

Identification of topological order. Determining the result-
ing surface topological order requires identifying the decon-
fined anyons, i.e., those that can move continuously through-
out the surface. The plates each carry 16 quasiparticles built
from combinations of a and d. Only electrons can move be-
tween plates, and in the absence of the gapping interactions
(2)-(4) the fractional quasiparticles are therefore confined in
the y direction. How then can anyons propagate along y when
interactions ‘stitch together’ plates in the gapped topologically
ordered surface?

Consider first dragging an a charge-e/2 anyon from one
plate to the next. Since fractional excitations cannot directly
cross between plates, this process leaves a dipole described
by ay−a

†
y+ ∼ eiθn at the interface as Figure 3(a) illustrates.

However, the condensate 〈eiθn〉 readily absorbs the dipole—
which is effectively invisible—negating any energy cost. The
a quasiparticle thus propagates freely across the surface, pre-
cisely as for a Laughlin quasiparticle jumping between two
strongly hybridized ν = 1/3 quantum Hall strips.
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TABLE I. Topological data for the fundamental anyons d̃ and a in
the symmetrically gapped weak topological insulator surface.

Anyon Charge T Ty Braid with d̃ Braid with a
d̃ 0 d̃∗ d̃a2(×electron) 0 i
a e/2 a a i 0

In contrast, asking the same question about the d quasipar-
ticle reveals physics unique to the WTI surface. Dragging a
neutral d anyon between plates does not simply leave behind
a dy−d

†
y+ dipole since the interactions (2-4) do not generate

condensation of such a dipole. To specify its fate we define a
neutral fermion

ψ̃R/L = ψR/La
2 ∼ e2iθc

(
ψL/Ra

2
)†

(5)

The condensates created by the interactions (2-4) identify
ψ̃R and ψ̃†L; we therefore refer to both as simply ψ̃. When
d crosses an interface it leaves the condensed combination
dy−d

†
y+ ψ̃ at the interface, and turns into a different anyon cor-

responding to d augmented by the neutral fermion ψ̃. Thus
quasiparticles d̃ given by

d̃ =

d, even plates

dψ̃†, odd plates
(6)

may propagate freely across the surface. Remarkably, transla-
tions act nontrivially on these anyons:

Tyd̃T
−1
y = d̃ψ̃. (7)

This property, which manifests an even-odd effect, crucially
distinguishes the symmetrically gapped WTI surface and the
topological order formed by individual plates. Table I sum-
marizes the topological data for the surface.

Related phases in 2D. As emphasized earlier, any symmet-
ric phase for the WTI surface cannot exist in a purely 2D sys-
tem with the same symmetries. It is instructive to analyze
how breaking either translation or time-reversal invariance al-
lows the topological order to appear in strict 2D. Breaking one
of these two symmetries allows for many ways to reduce the
system to a 2D gapped system with topological order. Perhaps
the simplest way is by decoupling the WTI from the 4σx plate,
gapping its surface, and gluing the 4σx plate to one another.
This forms a trivial insulator in parallel to a 2D 4σx state,
but does not retain the unique transformation under transla-
tion embodied in (7).

If we break time-reversal infinitesimally and preserve trans-
lation symmetry, however, we can have a 2D system that re-
tains Eq. (7). To that end, we look for a K-matrix and charge
vector that yield σxy = 0 since infinitesimal breaking of time-
reversal does not yield a Hall conductivity for a gapped sys-
tem. We also look for a single-unit-cell translation matrix My

which implements translations of quasiparticles ei~n·~Φ (~n is an
integer vector) as Tyei~n·

~ΦT−1
y = ei(My~n)·~Φ. This matrix must

obey MT
y K

−1My = K−1 and M2
y = 1. The first condition

ensures that statistics are invariant and is required for a system
symmetric to translation by one unit cell. The second condi-
tion states that all quasiparticles transform onto themselves
under translations by two unit cells. My must further encode
Eq. (7) while acting trivially on a quasiparticles and on elec-
trons. Trivial action means here that a translated excitation at
most acquires a local boson that transforms trivially under all
present symmetries. For example, the operation

TyψRT
−1
y = a4ψ†R ∼ ψR

(
ψ†Rψ

†
Ra

4
)
∼ ψR(ψ†RψLe

2iθc)

(8)

multiplies ψR by the local, charge-neutral boson in parenthe-
sis. This set of requirements is satisfied by [25]

K =


0 4 0 0

4 0 0 0

0 0 1 0

0 0 0 −1

 , Q =


2

0

1

1

 ,My =


1 −2 4 0

0 1 0 0

0 1 −1 0

0 0 0 1


(9)

with translations implemented in precisely this way; the sec-
ond and third columns ofMy encode (7) and (8). Note that the
local boson acquired by ψR under translations is odd under
time reversal. Consequently, Eq. (9) describes a translation-
symmetric 2D state only in the absence of time-reversal. If we
ignore My , the same K-matrix could equally well describe a
time-reversal-invariant 2D phase. However, enforcing trans-
lation symmetry through My violates time reversal. Such 2D
realizations can never simultaneously implement both time-
reversal and translation symmetries as in the WTI surface, fol-
lowing our earlier general arguments (Fig. 1).
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FIG. 3. (color online) (a) Dragging an anyon across plates leaves be-
hind ‘invisible’ operators at the interface that get absorbed into a con-
densate. The condensates allow the a quasiparticle, carrying charge
e/2, to pass freely between plates while the neutral d quasiparticle
acquires a neutral fermion and thus changes anyon type. (b) Weak
topological insulator surface with a screw dislocation. Upon encir-
cling the dislocation d̃ anyons acquire a neutral fermion, indicating a
zero mode bound to the defect.

Even-odd effect and weak symmetry breaking. It is illu-
minating to discuss the gapped WTI when the system con-
sists of a finite stack of N QSH layers. The surface is then
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quasi-1D and hence technically cannot sustain the required
topological order. Indeed, this case reveals a subtlety regard-
ing time reversal and the possibility of weak symmetry break-
ing [26]. As a primer consider Fig. 2(b) where a cylindri-
cal plate ‘wraps around’ a single QSH edge, leaving a gap-
less helical region of length ∆x. The QSH/plate interface
is identical to that considered above, and the same interac-
tions (2)–(4) can open a gap—ostensibly without breaking
symmetries. Furthermore the circular edge of the plate can
ostensibly also be gapped without breaking the symmetries
(either due to its finite-size or due to interactions [22]). In-
terestingly, symmetry-breaking must nevertheless occur [26]:
A right-moving electron from the gapless QSH edge cannot
penetrate into the adjacent gapped segments and must there-
fore reflect into an opposite-spin left-mover. This necessitates
spontaneous magnetization, which we now analyze.

Using Eq. (3) one can express the magnetization at the
gapless region’s endpoints as 〈ψ†LψR〉 ∼ ei2θs〈(d†−d+)2〉.
Three cases exist: (i) When the plate’s circular edges are
gapped by interactions the expectation value 〈(d†−d+)2〉 must
be circumference-independent. (ii) When the plate’s circu-
lar edges are gapped only owing to their finite-size, 〈d†−d+〉
and the magnetization decay as a power-law in the cylinder
circumference L. (iii) Finally, when the entire QSH edge is
gapped (∆x → 0) the circular edges are simply absent and
〈d†−d+〉 ∼ e−L/ξ with a length ξ set by the plate’s bulk quasi-
particle gap. This last case corresponds to the setup examined
in Ref. [26].

Consider next the N = 2 generalization of Fig. 2(b) where
plates arranged into a cylinder gap two QSH layers. The above
argument for spontaneous time-reversal symmetry breaking
no longer holds since a right-moving QSH electron from one
layer can backscatter into the other without breaking time re-
versal symmetry.

These two examples signify an even-odd effect. For N lay-
ers with periodic boundary conditions between the first and
N ’th layers the local magnetization at an interface y analo-
gously reads

〈ψ†L,yψR,y〉 ∼
〈(

d†−,yd+,y

)2
〉
. (10)

A finite expectation value generically arises if a d quasiparti-
cle from just above the interface can propagate intact to the
bottom side of the interface. The issue is subtle since d ac-
quires a neutral fermion ψ̃ when crossing an interface; re-
call Fig. 3(a). Consequently, direct tunneling (which requires
traversing a single interface) cannot generate a non-zero mag-
netization and quasiparticles must take the ‘long way’ around
to contribute. With even N the initial d ends up dressed by ψ̃
when it reaches the bottom of the interface, and the magnetiza-
tion thereby vanishes. By contrast, for odd N the d quasipar-
ticle boldly arrives undressed yielding a non-zero value. If the
entire surface is gapped this expectation value decays expo-
nentially with N , while with adjacent gapless modes [similar
to Fig. 2(b)] a power-law emerges.

Dislocation defects. The non-trivial action of translation
symmetry on d̃ anyons yields interesting consequences for lat-
tice defects. In a WTI screw dislocations terminating at po-
sition x0 on the surface [as in Fig. 3(b)] bind a helical QSH
edge state that penetrates into the bulk [27]. When interactions
gap the WTI boundary, electrons from the bulk helical modes
must backscatter at the surface. Such a defect thus locally vi-
olates time-reversal symmetry—yet another manifestation of
weak symmetry breaking. The impact on surface anyons is
even more striking: When d̃ encircles the termination point as
sketched in Fig. 3 it changes anyon type and acquires a neutral
fermion. This suggests that the dislocation forms an extrinsic
non-Abelian defect that traps a nontrivial zero mode (similar
effects arise in [28–32]).

Note that the point of the defect, x0, may be viewed as
the boundary between a region x < x0 where the interface
is gapped by means of the interactions (2)-(4), and a region
x > x0 where one QSH edge is left ungapped, and the two
neighboring topologically ordered plates are healed into one.
The penetration of the QSH edge into the third dimension does
not affect the following considerations. To capture the sponta-
neous breaking of TRS we add a two-particle backscattering
term (ψ†RψL)2 + H.c. to this QSH edge. The Supplemen-
tary Material [24] derives the following effective Hamiltonian
density that describes the defect,

H = ∆̃Θ(x0 − x)ψ̃Rψ̃L + ũΘ(x− x0)(ψ̃†Rψ̃L)2 +H.c.,
(11)

with ψ̃R/L defined in Eq. (5). (Note however that at x > x0

we no longer have ψ̃R ∼ ψ̃†L.) The ∆̃ and ũ terms respectively
arise from Eq. (2) and the two-particle backscattering upon
taking into account condensates involving the plates. Refer-
ences [33, 34] analyzed precisely Eq. (11) and showed that
the defect hosts a Z4 parafermion zero mode. The ‘Z4-ness’
reflects the two possible values for the spontaneous magneti-
zation and the two possible values for (neutral) fermion parity.

Conclusions. We explored strongly interacting WTI sur-
faces using a quasi-1D formulation that permits full analytical
control. We found that the surface can become gapped by
entering an Abelian topologically ordered state with several
unusual features. First, symmetries act on quasiparticles in a
manner forbidden in purely 2D setups. Second, an interesting
even-odd effect previously known for non-interacting elec-
trons persists in the topologically ordered surface: For a WTI
composed of an odd number of QSH systems, ‘weak sym-
metry breaking’ leads to a magnetization exponentially small
in the number of layers. Third, lattice defects in the Abelian
topologically ordered surface exhibit a non-Abelian structure,
which may be viewed as a manifestation of the anomalous
symmetry properties of the quasiparticles. We expect such
features to persist quite generally in weak topological phases
assembled from 2D symmetry-protected topological states.
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