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In many quantum architectures the solid-state qubits, such as quantum dots or color centers, are
interfaced via emitted photons. However, the frequency of photons emitted by solid-state systems
exhibits slow uncontrollable fluctuations over time (spectral diffusion), creating a serious problem
for implementation of the photon-mediated protocols. Here we show that a sequence of optical
pulses applied to the solid-state emitter can stabilize the emission line at the desired frequency.
We demonstrate efficiency, robustness, and feasibility of the method analytically and numerically.
Taking nitrogen-vacancy (NV) center in diamond as an example, we show that only several pulses,
with the width of 1 ns, separated by few ns (which is not difficult to achieve) can suppress spectral
diffusion. Our method provides a simple and robust way to greatly improve the efficiency of photon-
mediated entanglement and/or coupling to photonic cavities for solid-state qubits.

The ability to transfer quantum information between
the stationary qubits via photons is at the heart of many
applications such as long-range quantum networks and
quantum interface between distant qubits [1–6]. The
photon-mediated entanglement is based on indistinguish-
able photons (having the same polarization and fre-
quency) emitted by two different stationary qubits and
entangled with them [3–5, 7]. It is of central importance
for such solid-state qubits as quantum dots and color cen-
ters, which are often difficult to couple directly, while
the photon-mediated protocols present a very promis-
ing alternative [4–6]. At low temperatures, a noticeable
fraction of photons emitted from these qubits is concen-
trated in the zero-phonon line (ZPL) and is insensitive to
the phonon absorption/emission. The photons emitted
into the ZPL are naturally entangled to the originating
solid-state qubits [6, 8–13], and constitute excellent fly-
ing qubits; the emission into the ZPL can be enhanced
by placing the qubit into a cavity [14, 15].

However, ensuring indistinguishability of the photons
emitted by two different quantum dots or color centers
remains a crucial challenge [4, 5, 16–19, 21–23]. Changes
in the local strain and motion of the charges around the
emitter lead to slow random variation (spectral diffusion)
of the energies of the levels involved in the photon emis-
sion. The position of the ZPL (i.e. the frequency of the
emitted photons) fluctuates with the amplitude far ex-
ceeding the natural linewidth. Thus, the spectral overlap
between the photons coming from two different qubits is
greatly reduced, resulting in low efficiency of the her-
alded entanglement process. The same problem occurs
when the qubit is coupled to the photonic cavity: due to
spectral diffusion of the ZPL, the overlap of the emitted
photons with the cavity line is diminished, thereby re-
ducing the Purcell enhancement. Due to severity of the
problem, solutions have been actively sought, and the
schemes based e.g. on active feedback [17–20], three-level
emitters coupled to the cavities [24, 25], special emission

regimes [26, 27], have been explored.

Here we suggest a conceptually simple, general, and
robust protocol for suppressing the spectral diffusion of
the ZPL of the solid-state emitters. Since the frequency
of the emitted light is determined by the average phase
accumulated between the states of the emitter over the
spontaneous emission time, one can modify the emission
spectrum by changing the phase between the relevant
states with optical pulses. Below we show that by apply-
ing a series of short optical control pulses to the solid-
state emitter, the center of the zero-phonon emission line
can be pinned at any desired frequency, determined by
the carrier frequency of the pulses; this is demonstrated
both analytically and numerically. Taking NV centers
in diamond as an example, we show that only several
pulses of 1 ns width (corresponding to the optical Rabi
frequency of 0.5 GHz), separated by 5–6 ns, are sufficient
to suppress the spectral diffusion of the ZPL. The pro-
tocol is robust with respect to small non-idealities of the
pulses, and is explicitly shown to significantly improve
the photon indistinguishability. Our work shows how the
emission spectrum can be engineered using the pulse pro-
tocol, despite fast internal dynamics of the photon bath.
Further exploring this venue can be of much interest for
a wide class of problems concerning photon emission.

We model the solid-state emitter as a two-level system,
emitting photons in the course of spontaneous transition
from the excited state |e〉 (where the emitter initially is),
located at the energy h̄ω1 above the ground state |g〉
(below we set h̄ = 1), see Fig. 1(a). The optical control
pulses, each of very short duration tp, are applied at the
carrier frequency ω0, so it is convenient to work in the
rotating-wave approximation (RWA), using the basis ro-
tating with the frequency ω0. The system’s Hamiltonian
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FIG. 1. (Color online) (a) Excited state of the two-level sys-
tem (solid-state emitter) is shifted by random amount ∆ from
the desired position ω0, so that the spontaneous emission line
(of width Γ) is centered at ω1 = ω0 + ∆. To shift the line
to the target frequency, a sequence of pulses with the carrier
frequency ω0 is applied. (b) The optical 180◦ control pulses
are applied periodically, with the interval τ . In the rotating
frame, each pulse swaps the ground and the excited state, re-
versing the detuning ∆ → −∆. The total phase accumulated
before and after the pulse is nullified, and emission happens
as if the detuning was absent, with ZPL centered at ω0.

then has the form

H = Hc(t)+
∆

2
σz−i

L−1
∑

k=0

gk

(

a†kσ
− − akσ

+
)

+

L−1
∑

k=0

ωka
†
kak,

(1)
where ∆ = ω1 − ω0 is the detuning of the ZPL from the
target frequency, caused by the random fluctuation in
the local strain or charge environment; this detuning is
static on the spontaneous emission timescale. The oper-
ators σz = |e〉〈e| − |g〉〈g|, σ+ = |e〉〈g|, and σ− = (σ+)†

describe the emitter, ak is the annihilation operator of the
k-th photon mode (L modes in total), gk is its coupling
strength, and ωk is its detuning from ω0. The Hamilto-
nian Hc(t), describing the control pulses, can be taken as
Hc(t) = (Ω/2)[σ+ + σ−] during the pulses and zero oth-
erwise; for ideal (instantaneous, 180◦) pulses Ω = π/tp
and tp → 0 (experimentally, the optical Rabi frequency Ω
should be large in comparison with the typical ∆). Dur-
ing the pulses, under strong driving Ω ≪ Γ, the incoher-
ent scattering is dominant [28]. By including the RWA
directly in the Hamiltonian, we assume that ω1 is appro-
priately renormalized [29, 30], and the non-Markovian
effects [28, 31] in the electromagnetic bath can be ne-
glected.
Our approach is based on a qualitative argument that

the frequency of the emitted light is determined by the
average rate of phase accumulation [29, 30, 32] between
the states |e〉 and |g〉 over the time of spontaneous emis-

sion t0. This is due to the fact that on the timescales
short in comparison with the time t0 the emitter and the
emitted radiation constitute a single coherently evolving
quantum system, and the properties of the emitted pho-
ton are determined by the whole history of what hap-
pened to the emitter during the spontaneous emission
time, not only by its instant condition. In our case, by
applying the optical control pulses, the average (over the
timescale t0) rate of the phase accumulation is modified,
because each pulse changes σz to −σz, so the detuning
term (∆/2)σz changes its sign, see Fig. 1. If several pulses
are applied within the time t0 = 1/Γ then the average
detuning is nullified, and the appropriately averaged ac-
cumulated phase corresponds to the emission frequency
ω0. Below, we assume a simple periodic pulse pattern
with the inter-pulse delay τ , as shown in Fig 1(c).
There is a similarity between our approach and the dy-

namical decoupling (DD) method, which has been used
to decouple various quantum systems from their envi-
ronment [33–36]. However, in contrast with the stan-
dard optical pulse DD [37, 38], the control pulses here do
not attempt to cancel the coupling of the qubit to the
electromagnetic bath; this would require extremely short
[38] inter-pulse delay τ <∼ ω−1

0 and would suppress emis-
sion altogether. Instead, we use the pulses to cancel the
detuning, and in this way redirect emission from some
electromagnetic modes to others. It may also be possible
to achieve the same effect with the continuous control
of the emitter, in analogy to the continuous-wave decou-
pling [39–42], and consider the sequences with other pulse
timings [44]: this could provide novel ways of modifying
the properties of the emitted photons, and constitute an
interesting topic for future research.
We characterize the emission spectrum via the num-

ber of photons of a given frequency ω: Nω(t) =
∑′

k〈a
†
k(t)ak(t)〉, where summation is over the modes with

ωk = ω; note explicit dependence on time t. Within RWA
description, the relevant frequencies are confined to the
vicinity of ω0, so that ωk ∈ [−D,D] where D ≪ ω0,1

but much larger than all other frequency scales of the
problem. Within this region the coupling parameters
for all modes are practically constant, gk = g for all
k = 0, . . . , L − 1, and the photon density of states ρω
is also constant. Thus we choose ωk = −D + kǫ, with
ǫ = 2D/(L − 1); with this choice ρω = 1/ǫ. In real-
ity L → ∞, which implies the scaling g ∝ L−1/2 and
ǫ ∝ L−1. We also assume fixed polarization of the emit-
ted photons [4, 16]. Without control pulses, the solution
is the standard Lorentzian emission line [29, 43] centered
at ∆ with the width at half maximum Γ = 2πg2ρω. Ev-
erywhere below we normalize energy and time by Γ and
t0 = Γ−1, respectively, setting Γ = 2.
We consider the problem using both analytical and nu-

merical approaches in parallel. For analytical treatment
we employ the standard approach based on the weak cou-
pling/Markov approximation, used for studying sponta-
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FIG. 2. (Color online) Emission profile Nω in the presence of
control pulses, for τ = 0.2 and ∆ = 5.0, after 4 pulses (red
diamonds) and 8 pulses (blue circles), as compared with the
free spontaneous emission spectrum (green stars). Amplitude
of the latter is rescaled for easier comparison with the 8-pulse
spectrum.

neous decay and resonant fluorescence [29–31, 43]. We
use the toggling Heisenberg representation: between the
pulses the operators σz(t), σ±(t), and ak(t) evolve ac-
cording to standard Heisenberg representation, while the
control pulses change the emitter operators σ± → σ∓,
σz → −σz . The corresponding equations of motion for
the time-dependent operators after the n-th pulse are

ȧk = −iωkak + gk
(

ξ1σ
− + ξ2σ

†
)

(2)

σ̇− = −i(−1)n∆σ− +
∑

k

gkξ1akσz −
∑

k

gkξ2a
†
kσz

σ̇z = −2
∑

k

gk

[

ξ1a
†
kσ

− − ξ2a
†
kσ

+ − ξ2akσ
− + ξ1akσ

+
]

,

where we introduced the periodic functions ξ1(t) and
ξ2(t) of period 2τ , such that ξ1(t) = 1 for t < τ (before
the pulse) and ξ1(t) = 0 for τ < t < 2τ (after the pulse),
while ξ2(t) = 1 − ξ1(t). The equations of motion (2)
can be integrated iteratively between consecutive pulses
using the Markovian approximation [29, 31], and the an-
swer can be obtained in the limit of the large number of
pulses; see Supplemental Material [44] for details.
The analytically calculated fluorescence spectra Nω(t)

are shown in Fig. 2 for ∆ = 5.0. The free emission
(no control pulses) spectrum is compared with the pulse-
controlled emission for the inter-pulse delay τ = 0.2. The
total number of emitted photons increases with the num-
ber of pulses, so the amplitude of the no-control spectrum
has been rescaled. The spectra agree with our qualitative
arguments. The no-control ZPL is centered at ω = ∆,
and only a tiny fraction of emission is present at the
target frequency ω = 0. In contrast, the control pulses
shift the ZPL to the target position. Although addi-
tional satellite peaks appear on the sides, about 50% of
the spectral weight is successfully moved to ω = 0 peak.
The emission peaks are wide at t < t0, and acquire their
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FIG. 3. (Color online) Emission profiles Nω in the presence of
control pulses, for τ = 0.2 and ∆ = 3.0, after the 8-th pulse.
Blue diamonds represent the analytical results, while the red
circles represent the spectrum obtained via time-dependent
density matrix renormalization group (tDMRG) simulations.
The latter is rescaled by a factor 2/π in order to take into
account different density of the photon modes between the
analytical model and the 1-D chain used in tDMRG simula-
tions.

natural width Γ at longer times.

We used numerical simulations to independently check
analytical approximation, and to investigate the impact
of the pulse imperfections. Each pulse increases the num-
ber of total excitations in the system, nex = (1+σz)/2+
∑

k a
†
kak, leading to an exponential increase in the num-

ber of relevant states with time. To make the problem
tractable, we model the photonic bath in a different way,
as a periodic 1-D chain of L harmonic oscillators, with
the site 0 coupled to the two-level system (emitter); the
corresponding Hamiltonian is

H = Hc(t) +
∆

2
σz + C

(

σ+b0 + σ−b†0

)

−i(D/2)

L−1
∑

j=0

(

bjb
†
j+1 − b†jbj+1

)

(3)

where b†j and bj are the creation and annihilation oper-
ators for a boson at site j, respectively. Using Fourier
transform of the bosonic operators, it is easy to see that
this Hamiltonian is equivalent to Eq. 1, provided that
gk = g = C/

√
L and ωk = D sin 2πk/L. The lat-

ter dispersion relation ensures that the density of states
in the vicinity of the emission line (near ωk = 0) is
also constant, ρω = [πD/L]−1 (note the double degen-
eracy of each ωk), and the value of g is adjusted to
ensure Γ = 2. The increased density of states at the
edges (near ωk = ±D) is irrelevant because Nω(t) is
small there. Using this model for the photonic bath,
the problem can be efficiently solved for large values of
L and long times (large number of control pulses), us-
ing the time-dependent density matrix renormalization
group (tDMRG) method [51] using symmetries to reduce
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FIG. 4. (Color online) Emission profiles Nω after 8 pulses
(red diamonds) and 12 pulses (blue circles). (a) τ = 0.4 and
∆ = 3.0, The satellite peaks at ω = ±π/τ and ±2π/τ are
clearly seen. (b) τ = 0.4 and ∆ = 5.0. Both graphs show
that the protocol works for large delays τ > 1/∆, delivering
about 50% of emission to the target frequency.

the entanglements introduced by the periodic boundary
conditions [52].

The two methods, analytics vs. tDMRG, are compared
in Fig. 3. Good agreement between the two approaches is
clearly seen, taking into account the different photon dis-
persion laws and couplings g, the used analytical approx-
imations (weak coupling, large number of pulses), and
despite the fact that the parameters (L = 201, D = 20,
ρω ≈ 3.2) are far from the ideal quasi-continuous broad
spectrum of the photons with L ≫ 1, D ≫ 1, and
ρω ≫ 1. In order to account for different spectral den-
sity of the photon modes (ρω = L/(2D) for analytics
and ρω = L/(πD) for tDMRG), the tDMRG simulation
results for Nω are multiplied by a factor 2/π.

Dependence of the controlled emission profile on ∆
and τ is shown in Fig. 4. As expected, the central
peak at ω = 0 is flanked with the satellite peaks at
ω = ±π/τ,±3π/τ, . . ., since each pulse produces a 180◦

phase rotation. While the emission into these satellites
is unwanted, a large fraction of the spectral power is still
retained in the central peak. It is important that our
protocol does not require very short inter-pulse delays τ ,
and works even when τ > ∆−1, so that even large detun-
ings can be eliminated with moderately spaced pulses.

The overall structure of the emission profile remains un-
changed even at larger τ . Only, the spectral weight of the
central peak decreases for τ > 2∆−1, while the satellite
peak with the frequency closest to ∆ grows [44].

Finally, we tested robustness of the approach with re-
spect to two most typical experimental non-idealities, the
incomplete rotation during the optical control pulses, and
the finite width of the control pulses. We find that a
moderate 5◦ error in the rotation angle does not affect
efficiency of the control. In the same way, pulses as wide
as tp = 0.05 (which is 1/4 of the inter-pulse distance τ)
remain as efficient as ideal pulses. The corresponding
spectra are given in the Supplemental Material. Thus,
the requirement of sufficiently large optical Rabi driv-
ing, ∆ ≪ Ω = π/tp, which is needed to ensure that the
rotation is close to 180◦, would not be difficult to satisfy.
By suppressing the spectral diffusion, our protocol im-

proves indistinguishability of the emitted photons. We
analyzed the coincidence count rate for the two-photon
interference experiments, and the results show significant
improvement: informally speaking, about half of the pho-
tons become indistinguishable when the pulse control is
applied to the emitter; the detailed calculations are pre-
sented in the Supplemental Material.
As a specific example, let us consider a nitrogen-

vacancy (NV) center in diamond, which has several ZPL
separated by 3–5 GHz, corresponding to different excited
orbital levels [4, 10, 16, 53, 54]. At low temperatures
[16, 55] the ZPL has the natural width Γ = 2π · 16 MHz,
corresponding to the spontaneous decay time t0 = 10 ns.
The typical range of the detuning fluctuations ∆ ∼ 5Γ =
2π ·100 MHz, so that only a small portion of emission oc-
curs at the target frequency ω = 0. However, if the con-
trol pulses of duration tp = 0.05 are applied, separated by
τ = 0.3, then about 50% of the emission goes into the cen-
tral line at ω = 0. For NV centers, this corresponds to the
inter-pulse delay τ = 6 ns and the pulse width tp = 1 ns,
i.e. optical Rabi driving Ω = π/tp = 2π · 0.5 GHz. These
parameters are easily achievable in comparison with the
typically used optical Rabi driving of few GHz and sub-ns
timing. The modest Rabi driving also limits ionization of
NV center, and ensures that other ZPLs, located several
GHz away, are not affected.

Concluding, we suggested and analyzed a pulse pro-
tocol for suppression of spectral diffusion of the zero-
phonon line of a solid-state emitter, which is one of the
central problems on the way to implementing the long-
range quantum networks with solid-state nodes. We
demonstrated feasibility and robustness of the proto-
col. This approach is simple, does not involve additional
levels, and avoids long delays associated with feedback
methods (but can also be used along with the latter for
fine tuning of the ZPL). More generally, our results show
that the pulse control can be efficiently used to manipu-
late even fast (Markovian) environments, where the typ-
ical intra-bath evolution times are far shorter than the
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inter-pulse delays and pulse durations. Exploring this
venue of quantum control can develop solutions for a wide
class of problems concerning bosonic and fermionic envi-
ronments.

We thank L. C. Bassett, R. Hanson, and T. H.
Taminiau for inspiring discussions. This work was par-
tially supported by AFOSR MURI program and NSF.
The work at Ames Laboratory (design and analysis of the
protocol) was supported by the Department of Energy
— Basic Energy Sciences under Contract No. DE-AC02-
07CH11358. A.E.F. acknowledges NSF support through
grant DMR-1339564.

∗ slava@ameslab.gov
[1] H. J. Kimble, Nature 453, 1023 (2008).
[2] L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Na-

ture 414, 413 (2001).
[3] L. Childress, J. M. Taylor, A. S. Sørensen, and M. D.

Lukin, Phys. Rev. Lett. 96, 070504 (2006)
[4] W. Pfaff, B. J. Hensen, H. Bernien, S. B. van Dam, M. S.

Blok, T. H. Taminiau, M. J. Tiggelman, R. N. Schouten,
M. Markham, D. J. Twitchen, R. Hanson, Science 345,
532 (2014).

[5] H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S.
Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J.
Twitchen, L. Childress and R. Hanson, Nature 497, 86
(2013).

[6] W. B. Gao, P. Fallahi, E. Togan, A. Delteil, Y. S. Chin,
J. Miguel-Sanchez, and A. Imamoğlu, Nature Comm. 4,
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