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The fine structure constant and the electron mass in string theory are determined by the values of
scalar fields called moduli. If the dark matter takes on the form of such a light modulus, it oscillates
with a frequency equal to its mass and an amplitude determined by the local dark matter density.
This translates into an oscillation of the size of a solid that can be observed by resonant-mass
antennae. Existing and planned experiments, combined with a dedicated resonant-mass detector
proposed in this work, can probe dark matter moduli with frequencies between 1 kHz and 1 GHz,
with much better sensitivity than searches for fifth forces.

Introduction.— In string theory, the values of the fun-
damental parameters, such as the fine structure constant
or the electron Yukawa coupling, are functions of scalar
fields called moduli. In a typical vacuum, there are sev-
eral moduli which describe geometric properties of the
extra dimensions of space, such as their size. The masses
of the moduli are model-dependent. Several moduli often
remain massless as long as supersymmetry is unbroken.

For a supersymmetry breaking scale near a TeV, they
can acquire a mass as large as 0.1 meV or a frequency
of 20 GHz. These rough estimates are often corrected by
small coefficients, such as loop, logarithmic, and large-
volume factors, that make the moduli masses signifi-
cantly lighter [1–4]. Moduli associated with small num-
bers, such as the electron Yukawa coupling, are also
naturally much lighter. One may even speculate that
the ultrasmall cosmological constant is associated with
an ultralight dilaton whose mass is of order the Hubble
scale [5].

In the absence of a general theoretical mass range for
moduli, we will only concern ourselves with experimental
constraints. These scalars are an excellent dark matter
(DM) candidate when produced through the misalign-
ment mechanism. In order for a scalar to be a good DM
candidate that gravitationally clumps at galactic scales,
it has to be heavier than 10−22 eV [6]. For scalar DM to
be well-characterized as a scalar field, instead of individ-
ual particles, its mass must be lighter than about 0.1 eV.
Such a DM candidate—denoted by the field φ—can cause
fundamental constants to oscillate in time [7]. We con-
sider couplings to the electron e and the electromagnetic
field strength Fµν :

Lint ⊃ −
√

4πGNφ

[
dme

meēe−
de
4
FµνF

µν

]
, (1)

where GN is Newton’s constant (~ = c = kB = 1
throughout). We can identify φ with an electron Yukawa
(electric charge) modulus if dme

6= 0 (de 6= 0). If φ
constitutes the local DM energy density ρDM, it can be

approximated by

φ(t,x) '
√

2ρDM

mφ
cos [mφ(t− v · x + . . . )] , (2)

where |v| is the relative velocity of the DM with respect
to the Earth, roughly equal to the virial velocity vvir in
our Galaxy. The field oscillation occurs at an angular
frequency equal to the DM mass, mφ, and exhibits high
fractional temporal and spatial coherence of v−2

vir ∼ 106

and v−1
vir ∼ 103, respectively, due to a low velocity disper-

sion of the DM [8]. In such a background, the electron
mass me and the fine structure constant α can fluctuate
along with φ according to

me(t,x) = me,0

[
1 + dme

√
4πGN φ(t,x)

]
, (3)

α(t,x) = α0

[
1 + de

√
4πGN φ(t,x)

]
. (4)

The size of any atom is of order 1/αme, and will oscil-
late if me or α fluctuate. For a single atom, this is a
tiny effect. However, it is enhanced when the atoms are
stacked, as in a solid.

In this Letter, we show how this amplification by the
number of atoms, in combination with resonant effects,
can be exploited to search for scalar DM with existing
technology already used to search for gravitational wave
(GW) radiation. In what follows, we explain how the
signal arises, describe the reach of existing experiments,
and discuss future directions, including a new experimen-
tal proposal. Finally, we compare with other constraints
on scalar DM and find an improvement in sensitivity by
several orders of magnitude.
Experimental signature.— The effect of a DM modulus

on a low-loss massive antenna can be captured by consid-
ering the response of a harmonic oscillator. An otherwise
free mass M on a physical, dissipative spring of equilib-
rium length L, resonant frequency ω and a quality factor
Q obeys

M

[
ẍ+

ω

Q
ẋ+ ω2 (x− L)

]
= Fth + Fext. (5)
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FIG. 1. Scalar field parameter space, with mass mφ and corresponding DM oscillation frequency fφ = mφ/2π on the bottom
and top horizontal axes, and couplings of both an electron mass modulus (di = dme) and electromagnetic gauge modulus
(di = de) on the vertical axis. Natural parameter space for a 10 TeV cutoff is depicted in green, while the other regions and
dashed curves represent 95% CL limits from fifth-force tests (“5F”, gray), equivalence-principle tests (“EP”, orange), atomic
spectroscopy in dysprosium (“Dy”, purple), and low-frequency terrestrial seismology (“Earth”, black). The blue curve shows
the projected SNR = 1 reach of a proposed resonant-mass detector—a copper-silicon (Cu-Si) sphere 30 cm in radius—after
1.6 y of integration time, while the red curve shows the reach for the current AURIGA detector with 8 y of recasted data.
Rough estimates of the 1-year reach of a proposed DUAL detector (pink) and several harmonics of two piezoelectric quartz
resonators (gold points) are also shown.

with thermal Brownian noise forces Fth in the spring, and
external noise forces Fext. In the presence of a modulus,
the equilibrium size of the spring is oscillating in time L '
L0 cos(mφt). Once we define the “displacement distance”
D ≡ x− L, the influence of the modulus is revealed as a
new force:

M

[
D̈ +

ω

Q
Ḋ + ω2D

]
' −ML̈+ Fth + Fext, (6)

up to O(1/Q)-suppressed force terms. The modulus-
induced force is analogous to the tidal force caused by
a GW [9], except that the modulus induces a monopole
strain instead of a quadrupole strain pattern. This intu-
ition can be extended to continuous acoustic systems by
describing the modulus as a scalar GW with an effective
isotropic Riemann curvature tensor

Reff
i0j0 = δij ḧ, (7)

where the effective strain h ≡ −δα/α − δme/me =
− (dme

+ de)
√

4πGNφ inherits the coherent properties
of the DM field oscillation as described below Eq. (2).
The response of a resonant-mass detector to modulus DM
may thus be extracted from well-known strategies for de-
tecting monochromatic gravitational wave radiation.

A resonant-mass detector is acoustically equivalent to
a combination of independent harmonic oscillators, since
the displacement from equilibrium in an elastic solid

can be decomposed into normal modes as D (x, t) =∑
nDn(t)un(x). In a spherical geometry, we can take

un(x) = r̂un(r), since only spherically symmetric (l = 0)
modes are excited by a scalar strain. For a sphere of
radius R with uniform density ρ and longitudinal (trans-
verse) sound speed cl (ct), these mode functions can be
found in Ref. [10]. They have resonant angular frequen-
cies ωn = clkn with kn ' nπ/R. We choose a normaliza-
tion such that un(R) = 1, and define the effective mode
mass Mn through

∫
V d

3x ρun ·un′ = δnn′Mn. With these
conventions, Dn is the absolute displacement of the sur-
face from the equilibrium radius Req, and satisfies Eq. (6)
with an effective modulus force

Fmod,n ≡ −Ri0j0
∫
V
d3x ρuinx

j = −ḧM◦RJn (8)

with M◦ the mass of the sphere and a coupling factor

Jn ≡ 3R−4
∫ R

0
dr r3un which decouples for the higher

harmonics as Jn ∼ n−2. Modulus DM can be detected if
the force in Eq. (8) exceeds the noise forces Fth and Fext.
Existing resonant-mass detectors.— The response of

resonant-mass detectors to gravitational waves was first
described by Weber [11, 12]. Resonant-mass GW detec-
tors have made great strides in sensitivity since the first
“Weber bars” (see Ref. [13] for a historical review), so
far culminating in a network of third-generation experi-
ments [14, 15] consisting of cryogenic, ton-scale, cylindri-
cal antennae operating at around 900 Hz. Despite qual-
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FIG. 2. Schematic of the proposed setup: a Cu-Si sphere
whose surface displacement is monitered by a Fabry-Pérot
(“FP”) interferometer. Elements encircled by the dotted lines
are independently suspended and isolated from vibrations.

ity factors in excess of a million, these detectors achieve
a sizeable fractional bandwidth of O(10%) by amplify-
ing the surface displacement of the main antenna with
a series of smaller mechanical and electrical resonators
tuned to the frequency of the lowest longitudinal har-
monic of the cylinder. The AURIGA collaboration has
achieved the widest bandwidth, operating at a noise level

S
1/2
hh . 10−20 Hz−1/2 for 850 Hz . f . 960 Hz for an

optimally-polarized gravitational strain hij [16]. Recast-
ing as a projected reach for modulus couplings at unit
signal-to-noise ratio (SNR = 1) with 8 years of data on
tape yields the red curve in Fig. 1.

Astrophysical objects provide for naturally occurring
resonant-mass antennae. The fundamental breathing
mode of the Earth, which has a 20.46-minute period and
Q ≈ 7500, was studied with a dedicated seismometer in
Ref. [17] over a 7-month period. The observed vertical

acceleration noise spectrum of 7.6 × 10−8 m s−2 Hz−1/2

corresponds to a spherical strain sensitivity S
1/2
hh ≈ 8.4×

10−14 Hz−1/2, and a constraint |h| . 4.5 × 10−17. In-
terpreted as a 95% CL limit on modulus DM couplings,
this yields |de + dme

| . 2.5 × 10−4 in a 1.3 × 10−4 frac-
tional bandwidth around fφ ≈ 8.1 × 10−4 Hz (black
line in Fig. 1). Modern examinations of the Earth’s
higher harmonics [18] and crust excitations [19–21] may
also be interesting, but likely have worse strain sensi-
tivity. Lunar- [22] and helio- & astero-seismic observa-
tions [23–25] have shown more promise towards detecting
(quadrupole) metric variations; monopole strain excita-
tions of these systems merit further investigation.

Future resonant-mass detectors.— Given the unknown
modulus mass, there is a clear need for a wide-band de-
tector, or a narrow-band one with scanning ability. Pro-
posals in the former category, such as “xylophone” arrays
[26, 27] and “DUAL” detectors [28–30], have been pro-
posed for GW searches in the 1–10 kHz band, and would
have excellent reach for moduli as well. The wider-band
DUAL proposal of Ref. [30] with a capacitive readout
may reach sensitivity to quadrupole strains at the level
of 10−22 Hz−1/2. The same noise spectrum for monopole
strains would yield a reach as represented by the pink
curve in Fig. 1 after 1 y of data. (This is a useful
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FIG. 3. Strain reach |h| at SNR = 1 as a function of fre-
quency f after an integration time tint = 5×107 s (thick blue
curve), consisting of a 5% fractional frequency scan by vary-
ing the temperature between 4 K and 100 K in increments,
each tshot = 103 s long. Reach for one “shot” at 4 K is shown
by the thin blue curve (up to the third harmonic, for clarity).
Equivalence-principle and fifth-force exclusions are shown in
orange and gray, while strains below the green line are natural
for an electron Yukawa modulus with a 10 TeV cutoff.

proxy, because although a modulus would excite higher-
frequency modes in that setup, we expect a comparable
sensitivity with only minor readout changes.)

In this Letter, we propose a scanning experiment be-
cause of its simplicity and feasibility with current tech-
nology. The basic experimental concept, illustrated in
Fig. 2, is that of a freely suspended sphere, whose acous-
tic modes can be frequency-shifted by dialing the tem-
perature and detected via an interferometric readout of
the sphere’s surface displacement.

By exploiting the temperature dependence of elastic
properties, adjustment of each mode’s angular frequency
ωn = clkn becomes possible. We propose a spheri-
cal antenna of radius R = 0.3 m made out of a ma-
terial such as C65500 copper-silicon alloy (high-silicon
bronze “A”), for which cl varies by about 5% below 100
K while maintaining a high quality factor (Q ∼ 106)
[31, 32]. Copper-based alloys are already used in spher-
ical resonant-mass GW detectors [33, 34] for their high
density ρ ≈ 8×103 kg/m3, sound speed cl ≈ 4×103 m/s,
and thermal conductivity.

Brownian noise forces are broadband. By the
fluctuation-dissipation theorem [35], their single-sided
noise spectral density is Sth

FF ' 4TMnωn/Qn around
each mode, for a temperature T � ωn. Using
Eq. (8), this translates to a near-resonance strain spec-
trum Sth

hh '
4TRMn

M2
◦Qnc3l

1
k3nR

3J2
n

or an amplitude of 1.5 ×
10−21 Hz−1/2(Mn/M◦k

3
nR

3J2
n)1/2 at 4 K, with the latter

factor scaling as ∼n1/2.
A Fabry-Pérot interferometer, schematically drawn in

Fig. 2, can measure the sphere’s total surface displace-
ment x = D+ δReq through changes in the cavity length
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Lcav = 1 mm, which cause laser light to fluctuate in in-
tensity on a photodiode. The shot-noise-limited displace-
ment spectral density is Sds

xx(ω) = Sds
xx,0

[
1 + (ω/Ωcav)2

]
,

where the cavity bandwidth is Ωcav ≡ π/2FLcav and the
cavity finesse is taken to be F ≈ 3 × 104. We assume a
baseline sensitivity of Sds

xx,0 ≈ 10−38 m2 Hz−1 ∼ λ/F2P ,
achievable with a laser power P ∼ 1 mW and opti-
cal wavelength λ [36]. Converting to a strain spec-
tral density yields a near-resonance strain sensitivity of
Sds
hh(ωn)1/2 ≈ 10−25 Hz−1/2(Mn/M◦Jn) for ωn � Ωcav,

scaling as ∝ n2 (above the cavity bandwidth, like n3).
Thermal noise sources in the interferometer can be kept
subdominant above 1 kHz with fused silica mirror sub-
strates, silica/tantala coatings, and a laser beam width
of 1 mm [37, 38]. Vibration isolation schemes with
−200 dB attenuation exist for similar geometries [39],
and should be able to reduce typical seismic noise spectra
. 10−10 m Hz−1/2 [40] to negligible levels above 100 Hz.
Monopole modes may be discriminated from multipole
and other spurious modes via calibration hammer tech-
niques [33] or multiple cavities [41].

The reach of our proposal is shown in Figs. 1 & 3. The
resonant frequencies are adjusted in fractional increments
of 10−6—the fractional signal bandwidth—by varying T
in 2 mK steps. If each “shot” lasts a time tshot = 103 s, a

strain hshot(ω, Ti) ' Shh(ω, Ti)
1/2t

−1/4
shot (2π/mφv

2
vir)
−1/4

can be detected at SNR = 1, depicted by the thin blue
curve in Fig. 3 for a temperature Ti = 4 K. After an in-
tegration time tint = 5× 107 s, a set of 5× 104 shots has

a strain reach hint(ω) '
[∑

i hshot(ω, Ti)
−4
]1/4

less than
10−20 in a 5% band around each l = 0 harmonic up to
n ∼ 100. Better sensitivity may eventually be attained at
ultracryogenic temperatures. Since this precludes scan-
ning of the resonant frequencies, traditional capacitive
transducer readouts as in Refs. [33, 34] or more advanced
interferometer schemes [42] would have to be employed.

Yet higher frequencies may be explored by microme-
chanical resonators, for which the unfavorable scaling
of Brownian noise with size may be mitigated by us-
ing clever geometries and extremely low-loss materials.
The proposal of Ref. [43] to detect high-frequency GWs
in curved-plate quartz crystals is also sensitive to mod-
ulus DM. An isotropic strain excites longitudinal acous-
tic modes, which, due to the piezoelectric nature of the
quartz crystal, may be picked up by an electronic circuit.
On-resonance strain sensitivities down to 10−22 Hz−1/2

are expected for up to a hundred modes per crystal [43].
(Methods to increase the bandwidth are under develop-
ment [44].) The modulus coupling reach of harmonics in
two 20 mK sensors from Ref. [43] is illustrated by the
gold points in Fig. 1.

Non-acoustic experiments.— The phenomenology of
light scalars with modulus couplings as in Eq. 1 extends
beyond the acoustic signature described above.

Through scalar exchange, two macroscopic bodies with

mass M1 and M2 experience a Yukawa force with a
range set by m−1

φ . Its strength relative to gravity is

α
(1,2)
mod ≡ (d1Q1)(d2Q2) with diQi ≡ dme

Qme
+ deQe. We

follow the notation of Ref. [45], in which Qme
(Qe) is

the fractional amount of electron-mass (electromagnetic)
energy relative to the rest-mass energy M of the object.

Searches for fifth forces at a length scale L are sensi-
tive to moduli with mass mφ ∼ 1/L. A number of exper-
iments have set constraints on composition-independent
|αmod| . 10−2.5 for 10−21 eV . mφ . 10−4.3 eV [46].
Rescaling by typical modulus charges Qme ∼ 1/4000 and
Qe ∼ 1/500 yields approximate constraints on |dme | and
|de| shown in gray in Fig. 1.

The modulus force also violates the equivalence princi-
ple: two test masses M1 and M2 experience a different ac-
celeration in the presence of a third one M3 even though

M1 = M2, provided that α
(1,3)
mod 6= α

(2,3)
mod . The Eöt-Wash

experiment [47] has measured the fractional differential
acceleration of beryllium and titanium in the Earth’s
gravitational field to be (aBe − aTi)/a ≈ (0.3 ± 1.8) ×
10−13. Using Q⊕i (QBe

i −QTi
i ) = {−2.42× 10−9,−3.00×

10−6} for i = {me, e}, one arrives at the 95% CL up-
per limits |dme | . 1.05 × 10−2 and |de| . 2.98 × 10−4

for mφ � 1/R⊕, shown in orange in Fig. 1. Bounds for
mφ & 1/R⊕ are estimated by rescaling the limit accord-
ing to Ref. [48]. Lunar laser ranging sets less stringent
constraints [45, 49].

Besides mediating EP-violating forces, a modulus field
sourced by a massive body could also slightly alter fun-
damental constants around it. When sourced by the Sun,
the modulus appears as an annual modulation of the fine
structure constant or the electron mass with a known
phase, and amplitude proportional to the Sun’s modu-
lus charges Q�i and the ±1.65 × 10−10 annual variation
of the gravitational potential of the Sun on the Earth’s
orbit. The absence of such modulation in spectroscopy
data of two different dysprosium isotopes [50] constrains
|de| to be less than 2.1×10−2 for mφ � (AU)−1. Atomic
clock pairs have the capability to greatly improve upon
this technique, and extend it to other couplings.

Assuming that the field φ comprises part or all of the
DM density, the modulus can be probed by spectroscopic
searches for time-varying fundamental constants [7]. Re-
cently, Fourier analysis of transition energies in two dys-
prosium isotopes has set the tightest constraints on |de|
for mφ . 3 × 10−18 eV [51], as indicated by the pur-
ple curve in Fig. 1. In the background field of Eq. (2),
a mass M also experiences a (gradient-suppressed) force
that may be observable in differential accelerometers such
as free-mass GW detectors [7].

Black hole superradiance [52] excludes scalars with 6×
10−13 eV . mφ . 2× 10−11 eV regardless of abundance
and the couplings in Eq. (1), unless φ has sufficiently
strong self-interactions [53]. Stellar cooling bounds are
not competitive with force tests for the masses under
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consideration [54]. A detailed summary of astrophysical
constraints can be found in Ref. [7].

Discussion.— The mature technology of resonant-mass
detectors provides a new way to probe scalar DM that
couples to the electron mass and electric charge, with a
sensitivity beyond that of EP and fifth-force tests, over
a wide range of frequencies.

Resonant-mass detectors are better suited for scalar
DM searches than free-mass interferometers such as
LIGO, which have much reduced sensitivity to scalar
GWs [55] because of laser phase noise. By using equal-
length interferometer arms, this noise can be canceled
while leaving a quadrupole GW signal unaffected. How-
ever, this strategy also suppresses the scalar DM signal
up to small gradient effects [7].

A scalar DM candidate frequently appears in string
theory as a modulus, the dilaton or axions, even though
for the latter the expected modulus couplings are far be-
low our sensitivity levels [7]. Designing setups with wide-
band sensitivity is crucial given the unknown masses of
these DM candidates. Theoretically, large couplings im-
ply large radiative corrections to the mass of scalar par-
ticles, and thus bias towards a model-independent min-
imum mass: m2

φ & 1
(4π)3 d

2
me
y2
eGNΛ4 + 1

4πd
2
eGNΛ4 [1].

This naturalness criterion is satisfied inside the green
bands of Fig. 1 for a hard cutoff of Λ ≈ 10 TeV.

The technology behind resonant-mass detectors has
steadily improved over the past five decades, and offers
a unique opportunity to search for a well-motivated DM
candidate over a wide range of masses and couplings in
the immediate future.
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